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Preface

This volume is dedicated to Jean-Pierre Jouannaud on his 60th birthday. It con-
tains refereed contributions by leading researchers in the different areas spanned
by Jean-Pierre Jouannaud’s work. These papers were presented at the sympo-
sium held in Cachan near Paris, on June 21–22, 2007, in Jean-Pierre Jouannaud’s
honor.

Jean-Pierre has deeply influenced, and is still influencing, research in Infor-
matics, through the many important results he has produced in various research
fields, through the generations of scholars he has educated, and through the role
he has played in helping the Informatics discipline to reach maturity and its
place among the other disciplines.

Jean-Pierre’s Origins and Contributions

Jean-Pierre defended his first thesis in 1972 on “Filtres digitaux autoadaptifs :
algorithmes de calcul et simulation”. Together with the emergence of Informatics,
he then moved to more symbolic topics and, as assistant professor at the uni-
versity of Paris 6 in Jussieu, he defended his “thése d’état” in 1977 entitled “Sur
l’inférence et la synthèse automatiques de fonctions LISP à partir d’exemples”.
This led him to investigate the foundational concepts emerging at that time:
lambda-calculus and rewriting.

Jean-Pierre then played a leading role in rewriting and its technology: he
introduced this field in Nancy, when he took up an Associate Professor position
in 1979, and founded there, together with Pierre Lescanne, the Eureca team
that got the CNRS silver medal in 1986. He was also at the origin of the RTA
(Rewriting Techniques and Applications) conference series in 1985. In this do-
main Jean-Pierre’s major contributions spanned to unification, rewriting and
completion modulo, conditional rewriting, termination proofs, modular proper-
ties, and automated proofs by induction in rewrite theories.

During his one year sabbatical at SRI International in 1984–85, Jean-Pierre
Jouannaud developed further his strong interest for algebraic specification
languages and their efficient implementation. He contributed with Kokichi Fu-
tatsugi, Joseph Goguen and José Meseguer to the design, semantics and imple-
mentation of OBJ2. Further important contributions of Jean-Pierre Jouannaud
concern order-sorted algebras and more recently membership equational logic,
an essential feature of the Maude system.

In 1985, Jean-Pierre moved to the university of Paris Sud in Orsay, where
he became full professor in 1986. There he founded the Demons team, which
focused on automated deduction and constraint solving. Then, with interactions
in particular with Gérard Huet, his interests widened to higher-order rewriting
and the calculus of constructions. He contributed to strong results on the in-
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tegration of rewriting and deduction leading to the design of proof assistants
with rewriting as a first-class concept. His results on termination of higher-order
rewriting are also leading the way.

In recognition of these outstanding scientific achievements, he was awarded
the “Prix Montpetit” from the French Academy of Sciences in 2000.

Jean-Pierre started several international collaborations and forged scientific
links and friendships, which continue over the years, in particular in the USA,
Canada, Argentina, Spain, Japan and Taiwan. The outcomes were formal joint
research projects (especially through NSF grants and European working groups),
general collaboration agreements, such as the French-Taiwanese collaboration,
which has been awarded a “Grand Prix” from the French Academy of Science,
or simply intensive visits both ways.

To promote and animate the theoretical computer science community has
been and remains one of his concerns. He was a member of the CNU (National
University Council), a member of the CNRS national committee, and he is head-
ing with great success the computer science laboratory at Ecole Polytechnique.

Jean-Pierre has exceptional qualities as a research team manager and as a
supervisor of students. His work with his students has always involved a close,
friendly relationship, a daily meeting, weekly encouragements, monthly enter-
tainment and a close care of the future of the students. One of the keys of
Jean-Pierre Jouannaud as a research team manager is his motto: “enjoy!”. Enjoy
everything that is good, which includes working together on research prob-
lems, and also drinking good wine, eating good food, skiing, climbing, wind-
surfing,. . . The best being to combine several of these activities. Having fun
working together, it is easy to spend hours on a problem, to launch new projects,
to arouse enthusiasm among students.

Jean-Pierre Jouannaud’s Doctoral Descendants

Jean-Pierre is an excellent teacher. He not only knows how to motivate work
on difficult and rich concepts, but he has also a profound understanding of their
deep properties and relationships. He loves to communicate his knowledge, know-
how and real enthusiasm. He has lectured generations of students and liked to
be involved in doctoral teaching. His ideas and practice have strongly influenced
many PhD students.

The following table summarizes his doctoral descendants. We have tried to
be as exhaustive as possible, and we did not take into account the many students
that will defend after 2007. A few persons appear several time, as they have been
supervised by two people.

1. Jean-Pierre Treuil, 1978: LQAS : Un systéme question-réponse qui acquiert
ses connaissances par apprentissage;

2. Fernand Reining, 1981: L’Ordre de Décomposition : un Outil Incrémental
pour Prouver la Terminaison Finie des Systémes de Réécriture équationnels ;
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3. Jean-Luc Rémy, 1982: Etude des systèmes de Réécriture Conditionnels et
Applications aux Types Abstraits Algébriques ;
(a) Hantao Zhang, 1984: REVEUR4 : Etude et mise en æuvre de la réécriture

conditionnelle;
(b) Wadoud Bousdira, 1990: Etude des Propriétés des Systèmes de Réécri-

ture Conditionnelle. Mise en Oeuvre d’un Algorithme de Complétion;
4. Claude Kirchner, 1982: Résolution d’équations dans les algèbres libres et les

variétés équationnelles d’algèbres ;
(a) Jalel Mzali, 1986: Méthodes de filtrage équationnel et de preuve automa-

tique de théorèmes ;
(b) Pierre Réty, 1988: Méthodes d’unification par surréduction;

i. Jacques Chabin, 1994: Unification générale par surréduction ordon-
née contrainte et surréduction dirigée;

ii. Sébastien Limet, 1996: Unification dans la programmation logico-
équationnelle;
A. Pierre Pillot, 2007: Utilisation des langages d’arbres pour la mod-

élisation et la vérification de systèmes à états infinis ;
iii. Julie Vuotto, 2004: Langages d’arbres réguliers et algébriques pour la

réécriture et la vérification;
(c) Aristide Mégrelis, 1990: Algèbre galactique — Un procédé de

calcul formel ;
(d) Éric Domenjoud, 1991: Outils pour la déduction automatique dans les

théories associatives-commutatives;
(e) Mohamed Adi, 1991: Calculs associatif et commutatifs. Etude et réalisa-

tion du système UNIFAC ;
(f) Patrick Viry, 1992: La réécriture concurrente;
(g) Francis Klay, 1992: Unification dans les Théories Syntaxiques ;

i. Karim Berkanu, 2003: Un cadre méthodologique pour l’intégration de
services par évitement des interactions ;

ii. Stéphanie Delaune, 2006: Vérification des protocoles cryptographiques
et propriétés algébriques ;

(h) Marian Vittek, 1994: ELAN : Un cadre logique pour le prototypage de
langages de programmation avec contraintes ;

(i) Pauline Strogova, 1996: Techniques de Réécriture pour le Traitement de
Problème de Routage dans des Graphes de Cayley;

(j) Iliès Alouini, : Étude et mise en oeuvre de la réécriture conditionnelle
concurrente sur des machines parallèles à mémoire distribuée;

(k) Farid Ajili, 1998: Contraintes Diophantiennes Linéaires : résolution et
coopération inter-résolveurs;

(l) Carlos Castro, 1998: Une approche déductive de la résolution de prob-
lèmes de satisfaction de contraintes ;

(m) Christelle Scharff, 1999: Déduction avec contraintes et simplification dans
les théories équationnelles;

(n) Horatiu Cirstea, 2000: Calcul de réécriture : fondements et applications;
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i. Clara Bertolissi, 2005: The graph rewriting calculus : properties and
expressive capabilities;

ii. Germain Faure, 2007: Structures et modèles du calcul de réécriture;
(o) Eric Deplagne, 2002: Système de preuve modulo rècurrence ;
(p) Huy Nguyen, 2002: Calcul de réécriture et automatisation du raison-

nement dans les assistants de preuve;
(q) Clara Bertolissi, 2005: The graph rewriting calculus : properties and ex-

pressive capabilities ;
(r) Benjamin Wack, 2005: Typage et déduction dans le calcul de réécriture;
(s) Antoine Reilles, 2006: Réécriture et compilation de confiance;
(t) Fabrice Nahon, 2007: Preuves par induction dans le calcul des séquents

modulo;
(u) Germain Faure, 2007: Structures et modèles du calcul de réécriture;
(v) Florent Garnier, 2007: Terminaison en temps moyen fini de systèmes de

règles probabilistes ;
(w) Colin Riba, 2007: Définitions par réécriture dans le lambda-calcul: con-

fluence, réductibilité et typage;
5. Hélène Kirchner, 1982: Résolution d’équations dans les algèbres libres et les

variétés équationnelles d’algèbres ;
(a) Christophe Ringeissen, 1993: Combinaison de Résolutions de

Contraintes ;
(b) Claus Hintermeier, 1995: Déduction avec sortes ordonnées et égalités ;
(c) Thomas Genet, 1998: Contraintes d’ordre et automates d’arbres pour les

preuves de terminaison;
i. Valérie Viet Triem Tong, 2003: Automates d’arbres et réécriture pour

l’étude de problèmes d’accessibilité;
(d) Peter Borovanský, 1998: Le contrôle de la réécriture: étude et implanta-

tion d’un formalisme de stratégies ;
(e) Pierre-Etienne Moreau, 1999: Compilation de règles de réécriture et de

stratégies non-déterministes ;
i. Antoine Reilles, 2006: Réécriture et compilation de confiance;

(f) Hubert Dubois, 2001: Systèmes de règles de production et calcul de réécri-
ture;

(g) Quang-Huy Nguyen, 2002: Calcul de réécriture et automatisation du
raisonnement dans les assistants de preuves;

(h) Olivier Fissore, 2003: Terminaison de la réécriture sous stratégies ;
(i) Liliana-Mariana Ibanescu, 2004: Programmation par règles et stratégies

pour la génération automatique de mécanismes de combustion
d’hydrocarbures polycycliques;

(j) Duc Khanh Tran, 2006: Conception de procédures de décision par com-
binaison et saturation;

6. Kounalis, 1985: Validation de spécifications algébriques par complétion in-
ductive;
(a) Pascal Urso, 2002: Généralisations et méthodes correctes pour l’induction

mathématique;
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(b) Ponsini Olivier, 2005: Des programmes impératifs vers la logique équa-
tionnelle pour la vérification;

7. Michael Rusinowitch, 1987; partial: Démonstration automatique par des tech-
niques de réécriture (thése d’état);
(a) Adel Bouhoula, 1994: Preuves automatiques par récurrence dans les

théories conditionnelles;
(b) Laurent Vigneron, 1994: Déduction automatique avec contraintes sym-

boliques dans les théories équationnelles;
(c) Eric Monfroy, 1996: Collaboration de solveurs pour la programmation par

contraintes ;
i. Lucas Bordeaux, 2003: Résolution de problémes combinatoires mod-

élisés par des contraintes quantifiées ;
ii. Brice Pajot, 2006: Modèles et architectures pour la résolution coopéra-

tive par solveurs de contraintes;
iii. Tony Lambert, 2006: Hybridation de méthodes complètes et incom-

plètes pour la résolution de CSP ;
(d) Narjes Berregeb, 1997: Preuves par induction implicite : cas des théories

associatives-commutatives et observationnelles;
(e) Sorin Stratulat, 2000: Preuves par récurrence avec ensembles couvrants

contextuels. Application à la vérification de logiciels de télécommunica-
tions ;

(f) Silvio Ranise, 2002: On the Integration of Decision Procedures in Auto-
mated Deduction;

(g) Matthieu Turuani, 2003: Sécurité des Protocoles Cryptographiques: Dé-
cidabilité et Complexité;

(h) Julien Musset, 2003: Approximation of transition relations. Application
to infinite states systems verification;

(i) Yannick Chevalier, 2003: Résolution de problèmes d’accessibilité pour la
compilation et la validation de protocoles cryptographiques;

(j) Tarek Abbes, 2004: Classification du trafic et optimisation des règles de
filtrage pour la détection d’intrusions;

(k) Abdessamad Imine, 2006: Conception Formelle d’Algorithmes de Répli-
cation Optimiste. Vers l’Edition Collaborative dans les Réseaux
Pair-à-Pair ;

(l) Eugen Zalinescu, 2007: Sécurité des protocoles cryptographiques: décid-
abilité et résultats de transfert ;

8. Hubert Comon, 1988; unofficial: Unification et disunification. Théories et
applications ;
(a) Marianne Haberstrau, 1993: ECOLOG : un Environnement pour la pro-

grammation en LOGique COntrainte;
(b) Florent Jacquemard, 1996: automates d’arbres et réécriture de termes ;
(c) Yan Jurski, 1999: Expression de la relation binaire d’accessibilité pour

les automates à compteurs plats et les automates temporisés ;
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(d) Véronique Cortier, 2003: Vérification automatique des protocoles
cryptographiques;
i. Eugen Zalinescu, 2007: Sécurité des protocoles cryptographiques: dé-

cidabilité et résultats de transfert ;
(e) Vincent Bernat, 2006: Théories de l’intrus pour la vérification des pro-

tocoles cryptographiques;
(f) Stéphanie Delaune, 2006: Vérification des protocoles cryptographiques et

propriétés algébriques ;
9. Alexandre Boudet, 1990: Unification dans les mélanges de théories équa-

tionelles ;
10. Hervé Devie, 1991: Une approche algébrique de la réécriture de preuves équa-

tionnelles et son application à la dérivation de procédures de complétion;
11. Evelyne Contejean, 1992: Eléments pour la décidabilité de l’unification mod-

ulo la distributivité;
12. Maribel Fernandez, 1993: Modèles de calculs multiparadigmes fondés sur la

réécriture;
(a) Lionel Khalil, 2003: Généralisation des réseaux d’interaction avec l’agent

amb de McCarthy : propriétés et applications ;
(b) François-Régis Sinot, 2006: Stratégies efficaces et modèles d’implantation

pour les langages fontionnels;
13. Marianne Haberstrau, 1993: ECOLOG : un Environnement pour la program-

mation en LOGique COntrainte;
14. Claude Marché, 1993: Réécriture modulo une théorie présentée par un sys-

tème convergent et décidabilité des problèmes du mot dans certaines classes
de thèories équationnelles;
(a) Xavier Urbain, 2001: Approche incrémentale des preuves automatiques

de terminaison;
(b) Pierre Corbineau, 2005: Démonstration Automatique en Théorie des

Types ;
15. Walid Sadfi, 1993: Contribution à l’étude de la séquentialité forte des défini-

tions de fonctions par règles ;
16. Frédéric Blanqui, 2001: Théorie des Types et Récriture;

(a) Colin Riba, 2007: Définitions par réécriture dans le lambda-calcul: con-
fluence, réductibilité et typage;

17. Benjamin Monate, 2002: Propriétés uniformes de familles de systèmes de
réécriture de mots paramétrées par des entiers ;

18. Daria Walukiewicz-Chrz ↪aszcz, 2003: Termination of Rewriting in the Calcu-
lus of Constructions;

19. Jacek Chrz ↪aszcz, 2004: Modules in Type Theory with Generative Definitions ;

We feel privileged to edit this volume, as a way to thank Jean-Pierre Jouan-
naud for all his scientific contributions and for communicating to us his
enthusiasm for research. We are most grateful to all the authors who enthu-
siastically contributed to this special issue and participated in the symposium.
We are also thankful to all those who helped us in the refereeing process and to
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Alfred Hofmann at Springer who supported our initiative. CNRS, Ecole Normale
Supérieure de Cachan, INRIA and LSV are gratefully acknowledged for their
organizational and financial support.

April 2007 Hubert Comon-Lundh
Claude Kirchner
Héléne Kirchner
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The Hydra Battle Revisited�

Nachum Dershowitz1,2 and Georg Moser3

1 School of Computer Science, Tel Aviv University,
69978 Ramat Aviv, Israel

nachum.dershowitz@cs.tau.ac.il
2 Microsoft Research, Redmond, WA 98052

3 Institute of Computer Science, University of Innsbruck,
Technikerstrasse 21a, A-6020 Innsbruck, Austria

georg.moser@uibk.ac.at

To Jean-Pierre on this momentous occasion.

Abstract. Showing termination of the Battle of Hercules and Hydra is
a challenge. We present the battle both as a rewrite system and as an
arithmetic while program, provide proofs of their termination, and recall
why their termination cannot be proved within Peano arithmetic.

As a second labour he ordered him to kill the Lernaean hydra.
That creature, bred in the swamp of Lerna,

used to go forth into the plain
and ravage both the cattle and the country.

Now the hydra had a huge body, with nine heads,
eight mortal, but the middle one immortal. . . .

By pelting it with fiery shafts he forced it to come out,
and in the act of doing so he seized and held it fast.

But the hydra wound itself about one of his feet and clung to him.
Nor could he effect anything by smashing its heads with his club,

for as fast as one head was smashed there grew up two.

– Pausanias, Description of Greece, 2.37.4

1 Introduction

The Battle of Hydra and Hercules, as described in the above-quoted myth, and
depicted on the Etruscan hydra (water jar) in Fig. 1, inspired Laurie Kirby and
Jeff Paris [24] to formulate a process, the termination of which cannot be proved
by ordinary induction on the natural numbers. Instead, recourse must be made
to induction on the ordinals less than the ordinal number “epsilon naught”, in
the ordinal hierarchy created by Georg Cantor.

� The first author’s research was supported in part by the Israel Science Foundation
(grant no. 250/05).

H. Comon-Lundh et al. (Eds.): Jouannaud Festschrift, LNCS 4600, pp. 1–27, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Caeretan hydra, attributed to Eagle Painter, c. 525 b.c.e. See [19]. (Courtesy
of the J. Paul Getty Museum, Villa Collection, Malibu, CA).

The alternating steps of Hercules and Hydra in the formal battle are quite
easy to understand (and are more appealing than the similar but older Good-
stein sequence [17], also treated in [24]). The battle itself is described in Sect. 2.
Yet the fact that Hercules is always the declared winner, as shown in Sect. 4,
is far from obvious. As such, it is arguably the simplest example of a terminating
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process that is not amenable to argument by means of Peano’s famous axioms
of arithmetic. Termination is a conceptually clear notion. Thus, it is fair to
claim that the Hydra Battle is more intuitive, as an independence result, than
employing Ramsey-like theorems, for instance; cf. [30].

In the popular survey on rewriting [10]2 by Jean-Pierre Jouannaud and the
first author (and in several later publications, [11, Prob. 23], [7]), a rewrite sys-
tem for the battle was presented, but it was unfortunately fraught with lapsus
calami. Nevertheless, proving its termination has been a challenge for contestants
in termination competitions [28]. A repaired version was promulgated years
later [26].

In the sections that follow, we describe the vicissitudes of this formalization
of the battle in rewrite systems (Sect. 5), prove their termination (Sect. 8), and
also encode the battle as a while program (Sect. 9). This paper concentrates
on the interpretation of successive hydræ as decreasing ordinal numbers. But
there are alternative, less “highbrow” arguments (in Alan Turing’s words [35]);
see Martin Gardner’s column [15]. Some properties of ordinals and orders are
briefly reviewed in Sects. 3, 6 and 7.

For more on the problem and its extensions, see [13]. See also [27,21,34]. We
conclude with one such extension.

2 The Hydra Battle

In a landmark paper [24], Kirby and Paris showed that – for their version of the
battle – more than ordinary induction on the natural numbers is needed to show
that Hercules prevails.

2.1 The Formal Battle

In the mathematical battle, hydræ are represented as (unordered, rooted, finite)
trees, with each leaf corresponding to one head of the monster. Whereas Her-
cules decapitates Hydra, one head at a time, Hydra regenerates according to
the following rule: If the severed head has a grandparent node, then the branch
issuing from that node together with the mutilated subtree is multiplied by a
certain factor; otherwise, Hydra suffers the loss without any regrowth. Hercules
wins when (not if!) the beast is reduced to the empty tree.

(In the original formulation of this game, the multiplication factor is one
more than the stage of the game. We modify the definition slightly and set the
multiplication factor equal to the stage of the game, as otherwise the system D
below fails to encode the Hydra Battle. The results in [24] are unaffected by this
change.)

We write (H, n) to describe a single configuration in the game, where H denotes
Hydra and n the current stage of the game.

2 This survey is the most cited document for its year of publication (1990) in the
CiteSeer database [31], and has always been high in the overall list.
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Example 1.

(H1, 1) (H2, 2) (H3, 3)

In the first stage, Hercules chops off the leftmost head. As this head has no
grandparent, Hydra shrinks. However, in Stage 2, Hercules chops off a head with
a grandparent (the triangular root). Consequently, Hydra grows two replacement
branches, as indicated. ��
More examples can be found in [24,34].

2.2 Functional Hydra

It is easy to express the Hydra Battle in a functional language with list opera-
tions, like Lisp. However, so as not to complicate matters unnecessarily, we do
not follow the original definition of Kirby and Paris, but rather restrict atten-
tion to ordered trees (with immediate subtrees ordered sequentially from left
to right). Let nil denote an empty list and cons(x, y) be the list obtained by
prepending an element x (the right-most subtree) to a list y (the remaining tree).
Thus, the first hydra in Example 1 would be represented as follows:

cons(�, cons(cons(cons(�, cons(�, nil)), nil), cons(�, cons(�, cons(�, nil))))) ,

where � = cons(nil, nil) stands for a leaf of a Hydra and we have reordered
the immediate subtrees of the root of H1 such that the number of nodes is non-
increasing. In the rewrite system to be introduced below, a “cons-cell” is grafted
together by the function symbol g.

Let car(cons(x, y)) = x and cdr(cons(x, y)) = y extract the first item in a
nonempty list cons(x, y) and the remainder of the list, respectively. The battle
can be encoded by the following program, L:

h0(x)
where

hn(x) :=
{
nil x = nil
hn+1(dn(x)) otherwise

dn(x) :=

⎧⎨
⎩
cdr(x) car(x) = nil
fn(cdr(car(x)), cdr(x)) car(car(x)) = nil
cons(dn(car(x)), cdr(x)) otherwise

fn(y, x) :=
{

x n = 0
cons(y, fn−1(y, x)) otherwise
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Here, hn(x) plays the game with initial hydra x, starting at stage n, dn(x) plays
one round of the battle, by travelling along a leftmost branch until encountering
a branch z such that car(car(z)) is empty, and then using fn(y, x) to prepend
k copies of y = cdr(car(z)) to x.

Better yet, if we let ε symbolize nil and use a colon : for cons, then the following
pattern-directed program plays the battle h0(x) until its inevitable end:

hn(ε) := ε

hn(x : y) := hn+1(dn(x : y))
dn(ε : y) := y

dn((ε : x) : y) := fn(x, y)
dn(((u : v) : x) : y) := dn((u : v) : x) : y

f0(y, x) := x

fn+1(y, x) := y : fn(y, x)

3 Orders and Ordinals

Termination proofs are often based on well-founded orderings. Our proofs are
no exception.

3.1 Well-Founded Orders

A partial order � is an irreflexive and transitive binary relation. Its converse is
written with a reflected symbol ≺. A quasi-order � is a reflexive and transitive
relation. A quasi-order � induces a (strict) partial order �, such that a � b if
a � b �� a. A partial order � on a set A is well-founded (on A) if there exists no
infinite descending sequence a1 � a2 � · · · of elements of A. A partial order is
linear (or total) on A if for all a, b ∈ A, a different from b, a and b are comparable
by �. A linear well-founded order is called a well-order.

Let F be a signature. An F-algebra A is a set A, its domain, together with
operations fA : An → A for each function symbol f ∈ F of arity n. An F -
algebra (A,≺) is called monotone if A is associated with a partial order � and
every algebra operation fA is strictly monotone in all its arguments. A monotone
F -algebra (A,�) is called well-founded if � is well-founded.

Let (A,�) denote an F -algebra and let a : V → A denote an assignment. We
write [a]A to denote the homeomorphic extension of the assignment a and define
an ordering �A on terms T (F ,V) in the usual way: s �A t if [a]A(s) � [a]A(t)
for every assignment a.

3.2 Order Types

We assume some very basic knowledge of set theory and in particular of ordinals,
as in, for example, [22]. We write > to denote the well-order on ordinals. This
order can, of course, be employed for inductive arguments.
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The ordinal ε0 (“epsilon naught”) is the smallest solution to ωx = x. Recall
that any ordinal α < ε0, α �= 0, can be uniquely represented in Cantor Normal
Form (CNF) as a sum

ωα1 + · · ·+ ωαn ,

where α1 � · · · � αn. The set of ordinals below ε0 in CNF will also be denoted
CNF. For α = ωα1 + · · ·+ ωαn and β = ωαn+1 + · · · + ωαn+m , the natural sum
α ⊕ β is defined as ωαπ(1) + · · ·+ωαπ(n+m) , where π denotes a permutation of the
indices [1, n+ m] (= {1, . . . , n + m}) such that απ(1) � απ(2) � · · · � απ(n+m) is
guaranteed. We write α · n as an abbreviation for α + · · ·+ α (n times α), and
we identify the natural numbers (N) with the ordinals below ω. We denote the
set of limit ordinals by Lim.

To each well-founded order � on a set A, one can associate a (set-theoretic)
ordinal, its order type. First, we associate an ordinal to each element a of A by
setting

otype�(a) := sup{otype�(b) + 1 | b ∈ A and a � b} .

Then the order type of �, denoted otype(�), is defined as sup{otype�(a) + 1 |
a ∈ A}. For two partial orders � and �′ on A and A′, respectively, a mapping
o : A → A′ embeds � into �′ if, for all x, y ∈ A, we have that x � y implies
o(x) �′ o(y).

Lemma 1. If both � and �′ are well founded and if � can be embedded into
�′, then otype(�) � otype(�′).

Two linear partial orders (A,�) and (B,�′) are order-isomorphic (or equivalent)
if there exists a surjective mapping o : A→ B such that (x � y ⇐⇒ o(x) �′ o(y))
for all x, y ∈ A.

4 Herculean Strength

The natural game-theoretic question is whether Hercules has a winning strategy.
A strategy is a mapping determining which head Hercules should chop off at each
stage.

4.1 Hercules Prevails

It turns out that whatever strategy Hercules fights by he eventually wins. It’s
only a question of time. In our proof, we follow Kirby and Paris [24] and associate
with each hydra an ordinal below ε0:

1. Assign 0 to each leaf.
2. Assign ωα1 ⊕ · · · ⊕ ωαn to each internal node, where αi are the ordinals

assigned to the children of the node.

The ordinal representing Hydra is the ordinal assigned to her root node.



The Hydra Battle Revisited 7

Example 2. Consider hydræ H1–H3, above. These have the representations ω3 ⊕
ω2 ⊕ 1, ω3 ⊕ ω2, and ω2 · 3, respectively. ��

In the sequel, we confound the representation of a hydra as finite tree and as
ordinal. Let (H, n) denote a configuration of the game. Then (H)Sn denotes the
resulting Hydra if strategy S is applied to H at stage n. That is, the next con-
figuration is ((H)Sn, n + 1).

Lemma 2 (Kirby & Paris [24]). For any strategy S, Hydra H and natural
number n, we obtain H > (H)Sn.

Theorem 1 (Kirby & Paris [24]). Every strategy is a winning strategy.

Proof. The theorem follows from the lemma together with the fact that > is
well-founded. ��

One can readily see from the proof that Hercules also wins a seemingly more
challenging battle, wherein Hydra generates an arbitrary number of replacement
branches at any level of the tree, but the resulting Hydra is smaller (as an ordinal)
than the original. Again, any strategy is a winning strategy. Such a reformulation
of the Hydra Battle is depicted in Fig. 2, taken from a survey lecture on proofs
and computation by Jouannaud [23].3 Similar extensions of the Hydra Battle
have recently been considered by Rudolf Fleischer in [13].

=⇒

Fig. 2. Evelyne Contejean’s rendition of the battle (from Jouannaud’s survey [23])

Now we formally define a specific strategy for the Hydra Battle that has been
called standard in [34]. For n ∈ N, we associate an ordinal αn ∈ CNF with every
α ∈ CNF:

αn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if α = 0
β if α = β + 1
β + ωγ · n if α = β + ωγ+1

β + ωγn if α = β + ωγ and γ ∈ Lim

3 “This is one of Nachum Dershowitz’s favorite examples” [23].
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Then we can define the standard Hydra Battle as follows:

Definition 1 (Hydra Battle). A hydra is an ordinal in CNF. The Hydra
Battle is a sequence of configurations. A configuration is a pair (α, n), where α
denotes a hydra and n � 1, the current step. Let (α, n) be a configuration, such
that α > 0. Then the next configuration in the standard strategy is (αn, n + 1).

This definition implies that we force a one-to-one correspondence between finite
trees and ordinals. Hence, we again restrict ourselves to ordered trees.

This strategy conforms with the prior description of the battle, provided Hy-
dra’s immediate subtrees in the functional battle are arranged (at all levels) from
the largest on the left to the smallest on the right. Here, largeness or smallness
of subtrees is measured by the corresponding ordinal.

Remark 1. The sequence (αn)n∈N is usually referred to as a fundamental se-
quence of α. A fundamental sequence fulfills the property that for limit ordinal
λ ∈ Lim, the sequence (λn)n is strictly increasing and its limit is λ. For the
connection between rewriting and fundamental sequences, see, for example, [29].

4.2 Beyond Peano

In the remainder of this section, we show that Peano Arithmetic cannot prove
termination of the standard Hydra Battle, which is a special case of a more
general theorem stated in [24,13].

We define two ordinal-indexed hierarchies of number-theoretic functions.

Definition 2 (Hardy [36] and Hydra Functions). The Hardy functions
(Hα)α<ε0 are defined as follows:

H0(n) := n, and Hα(n) := Hαn(n + 1) (if α > 0) .

The related Hydra functions (Lα)α<ε0 , counting the length of the (standard)
Hydra Battle, starting stage n with hydra α, are:

L0(n) := 0, and Lα(n) := Lαn(n + 1) + 1 (if α > 0) .

The following lemma is an easy consequence of the definitions:

Lemma 3. The hierarchies (Hα)α<ε0 and (Lα)α<ε0 form a majorization hierar-
chy on ε0, in the sense that the functions are strictly increasing and each function
at level α eventually dominates the functions at level β for all β < α.

Next, we relate the functions Hα and Lα.

Lemma 4. For any α < ε0 and any n ∈ N we have

Hα(n) = HLα(n)(n) = n + Lα(n) .
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Proof. The second equation is easily established by noting that, for finite m, we
have Hm(n) = m + n. The first equation is proved by induction on α. The case
α = 0 follows from L0(n) = 0. For α > 0, put γ := αn and note that

Hα(n) = Hγ(n + 1) = HLγ(n+1)(n + 1) = HLγ(n+1)+1(n) = HLα(n)(n) .

In the second equality, we employ the induction hypothesis. For the third let
m = Lγ(n + 1) and observe Hm+1(n) = Hm(n + 1). ��

A function f is provably recursive in Peano Arithmetic (PA) if there exists a
primitive recursive predicate P and a primitive recursive function g such that
PA � ∀y1 · · · ∀yk∃xP (y1, . . . , yk, x) and f satisfies

f(n1, . . . , nk) = g(μxP (n1, . . . , nk, x)) ,

where μx denotes the least number operator.
Let the Hardy class H be defined as the smallest class of functions (1) contain-

ing 0, S (successor), all Hα, for α < ε0, and all projection functions In,i(a1, . . . ,
an) := ai, and (2) closed under primitive recursion and composition.

Theorem 2. The Hardy class H is the class of all provably recursive functions
in PA.

For a proof see [32].

Theorem 3. PA cannot prove termination of the standard Hydra Battle.

Proof. Suppose termination of the standard Hydra Battle would be PA-provable.
This is equivalent to the fact that

PA � �∀ α, n ∃m Lα(n) = m� ,

for a suitable arithmetization �·�. Hence, for all α < ε0 and all n ∈ N: Lα(n) is
a provably recursive function in PA. In particular, L(ε0)n

(n + 1) + 1 is provably
recursive, and thus by definition Lε0(n) is provably recursive. (The same holds
for Lε0(n) + n.) By Lemma 4, we conclude Lε0(n) + n = Hε0(n), which would
imply that Hε0(n) is provably recursive, contradicting Theorem 2. ��

Remark 2. It bears mentioning that if Hydra is constrained to a bounded initial
height, or if there is a fixed bound on her growth factor [27], then termination
is provable in PA.

5 Rewriting Hydra

A (term-) rewriting system is a (finite) set of rewrite rules, each of which is an
ordered pair of terms. Let F denote a signature and V , a (countably infinite) set
of variables. The terms over F and V are denoted T (F ,V). A binary relation
on T (F ,V) is a rewrite relation if it is compatible with F -operations and closed
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under substitutions. The smallest rewrite relation that contains R is denoted
→R. The reflexive-transitive closure of rewrite steps →R is denoted →∗

R; the
transitive closure, →+

R. For further details about rewriting, see the survey by
the first author and Jouannaud [10] or one of the books [2,33].

In [10], the following rewrite system H was introduced as an encoding of the
Hydra Battle:4

h(e(x), y) → h(d(x, y), S(y)) (1)
d(g(0, 0), y)→ e(0) (2)
d(g(x, y), z)→ g(e(x), d(y, z)) (3)

d(g(g(x, y), 0), S(z))→ g(d(g(x, y), S(z)), d(g(x, y), z)) (4)
g(e(x), e(y)) → e(g(x, y)) (5)

(To clarify the connection to the standard Hydra Battle, as presented in Sect. 2,
we have swapped the original arguments of the symbols d and h and make use
of the unary function symbol S instead of the original c.)

The idea was for h(x, n) to represent the nth stage of the battle, with Hydra
current being x, and with g serving as cons and 0 as nil. Then, d(n, x) marks the
position of Hercules’ search for a head to chop off (n is the replication factor);
d was also meant to perform the duplication (which is the rôle of f in the
functional program described in Section 2.2). The d in the first argument of g on
the right side of rule (4) forces that branch to get smaller, via rules (3) and (2),
assuming that branch has a head dangling at its right edge. The symbol e is used
to signal completion of the operation on a branch, and settles towards the root
after replication. The system was designed to allow various sterile derivations,
as well as the primary, battle one.

Unfortunately, rule (4) does not perform as advertised; the system does not
simulate the standard Hydra Battle, as defined in Sect. 2.5 To rectify this, the
first author proposed (on Pierre Lescanne’s rewriting list [26]) the following
System D, comprising six rules:

h(e(x), y) → h(d(x, y), S(y)) (6)
d(g(0, x), y)→ e(x) (7)
d(g(x, y), z)→ g(d(x, z), e(y)) (8)

d(g(g(0, x), y), 0)→ e(y) (9)
d(g(g(0, x), y), S(z))→ g(e(x), d(g(g(0, x), y), z)) (10)

g(e(x), e(y)) → e(g(x, y)) (11)

4 Some (lost) version of this rewrite system had been presented by the first author
at the Interdisciplinary Conference on Axiomatic Systems, in Columbus, OH, on
December 16, 1988.

5 The originally intended system probably had g(d(g(x, y), S(z)),d(g(g(x, y), 0), z)) as
the right-hand side of rule (4). Some additional changes are needed for it to be able
to simulate the standard Hydra Battle. We do not discuss this version any further.
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We will see below that the underlying semantics of the symbol g changed in
the transition from H to D. (Here again we have swapped the arguments of the
symbols d and h and make use of the unary function symbol S instead of the
original c.)

5.1 Faithfulness

It is not hard to see that, indeed, D faithfully represents the standard Hydra
Battle. We define a mapping O : CNF → T (F , ∅), where F is the set of function
symbols in D:

O(α) :=

⎧⎪⎨
⎪⎩

0 if α = 0
g(O(γ), 0) if α = ωγ

g(O(γ),O(β)) if α = β + ωγ

Each configuration (α, n) of the game is encoded by a term h(e(O(α)), Sn(0)).

Lemma 5. Let α ∈ CNF , α > 0, n ∈ N \ {0}. Then h(e(O(α)), Sn(0)) →+
D

h(e(O(αn)), Sn+1(0)).

Proof. Due to the presence of the rule h(e(x), y) → h(d(x, y), S(y)) in D, it
suffices to verify that d(O(α), Sn(0)) →+

D e(O(αn)). We proceed by induction
on α.

1. Case α = β+1: By definition, αn = β and O(α) = g(0,O(β)). Let t = O(α)
and s = O(β). To establish d(O(α), Sn(0)) →+

D e(O(αn)), we only need one
rewrite step by rule (7):

d(g(0, s), Sn(0))→D e(s) .

2. Case α = β + ωγ+1: By definition, αn = β + ωγ · n and t = O(α) =
g(g(0,O(γ)),O(β)). Let s = O(β), r = O(γ). Then

O(αn) = g(r, g(r, · · · g(r, s) · · · ))︸ ︷︷ ︸
n occurrences of r

,

and the following rewrite sequence suffices:

d(g(g(0, r), s), Sn(0))→+
D g(e(r), g(e(r), · · · d(g(g(0, r), s), 0) · · · )) (10)n

→D g(e(r), g(e(r), · · · g(e(r), e(s)) · · · )) (9)

→+
D e(g(r, g(r, · · · g(r, s) · · · ))) . (11)n

3. Case α = β + ωγ , γ ∈ Lim: By definition, αn = β + ωγn and O(α) =
g(O(γ),O(β)). Let t = O(α), s = O(β), r = O(γ), and u = O(γn). By the
induction hypotheses (IH), d(r, Sn(0)) →+

D e(u) holds. Hence, the following
rewrite sequence suffices:

d(g(r, s), Sn(0)) →D g(d(r, Sn(0)), e(s)) (8)

→+
D g(e(u), e(s)) (IH)

→D e(g(u, s)) . (11)
��
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6 Termination

We will employ “reduction orders” to prove termination of the Hydra systems.

6.1 Reduction Orders

A rewrite system R and a partial order � are compatible if R ⊆ �. A rewrite
relation that is also a well-founded partial order is called a reduction order. It is
easy to see that an interpretation-based term order �A is a reduction order if the
algebra (A,�) is well-founded and monotone. We say that (A,�) is compatible
with a rewrite system R if �A is compatible with R.

A system R is terminating if no infinite sequence of rewrite steps exists. Thus,
R is terminating iff it is compatible with a reduction order �.

6.2 Termination Properties

The rules of System D are similar to the original proposed formalization of the
Hydra battle. While the rules of System H defining h and g have been kept, the
three rules defining d have been replaced by four rules.

As given, all but the first rule of H and D decrease in a simple recursive path
order [5], with precedence d > g > e. The difficulty is in arranging for the first
argument of h to show a decrease, as well.

A terminating rewrite system is simply terminating if its termination can
be proved by a reduction order, like the recursive path order, that enjoys the
subterm property (namely, that subterms are smaller in the order).

Theorem 4. System H is terminating, but not simply terminating.

Proof. For now, we only prove the easy fact that H is not simply terminating,
the termination proof is postponed to Sect. 8. To show that H is not simply
terminating, note that the rewrite step

h(e(x), e(x)) →H h(d(x, e(x)), S(e(x)))

leads to a term that has the initial term embedded (homeomorphically) within
it. ��

By the same token, D is not simply terminating.

Theorem 5. System D is terminating, but not simply terminating.

Again the proof of termination is deferred until Sect. 8.

6.3 Previous Problems

While termination ofH, and implicitly of D, has been claimed a number of times
in the literature, to our best knowledge no (full, correct) termination proof has
been provided.
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For example, consider the proof sketch in [7, p. 8]. The idea of the proof is
to use a general path order [9] that employs the following interpretations of the
function symbols in H into the ordinals:

[[g(x, y)]] := ω[[x]] + [[y]] [[h(x, z)]] := [[x]] + [[z]]
[[d(x, z)]] := pred[[z]]([[x]]) [[e(x)]] := [[x]]

[[S(x)]] := [[x]] + 1 [[0]] := 1 .

The operator predζ is conceived as a suitable extension of the operator αζ for
ζ < ω; that is, we can assume predn(α) = αn.

One prerequisite to employ a general path order successfully is that, for all
ground instances lσ → rσ of rules in H, [[lσ]] � [[rσ]] holds. However, by defini-
tion, we have

[[d(0, 0)]] = [[d]](1, 1) = 11 = 0 ,

and therefore

[[d(g(d(0, 0), d(0, 0)), 0)]] = [[d]]([[g]]([[d(0, 0)]], [[d(0, 0)]]), 1)
= [[d]](1, 1)
= 0 < 1 = [[g(e(d(0, 0)), d(d(0, 0), 0))]] .

Unfortunately, d(g(d(0, 0), d(0, 0)), 0) → g(e(d(0, 0)), d(d(0, 0), 0)) is an instance
of rule (3).

Although this problem can be relatively easily rectified, there is a more serious
problem with the proposed interpretation [[·]]. This interpretation is employed as
one of the component functions of the general path order; to infer termination,
these component functions (and hence the interpretation [[·]]) should be weakly
monotone.

However, the interpretation function [[d]] is not weakly monotone in its first
argument: Consider two hydræ a = g(0, d(0, 0)) and b = g(d(0, 0), g(d(0, 0),
g(d(0, 0), 0))) with ordinal values [[a]] = ω and [[b]] = 4, respectively. Clearly
ω > 4 in the usual comparison of (set-theoretic) ordinals. But,

[[d(a, 0)]] = [[d]](ω, 1) = pred1(ω) = 1 < 3 = pred1(4) = [[d]](4, 1) = [[d(b, 0)]] .

Strictly speaking, one only needs monotonicity for terms that can rewrite to
each other, that is, fA(. . . x . . .) > fA(. . . y . . .) when x > y and x →R y; cf. [9,
Thm. 2]. (Here A denotes an F -algebra.) But consider rule (4) instantiated as
follows:

x = d(g(g(0, d(0, 0)), 0), S(b))→ g(d(g(0, d(0, 0)), S(b)), d(g(0, d(0, 0)), b)) = y ,

where b is defined as above. Then [[g(g(0, d(0, 0)), 0)]] = [[g]](ω, 1) = ωω + 1 with
[[g(0, d(0, 0))]] = ω. Hence [[x]] = [[d]](ωω + 1, 5) = ωω > ω5 + 4 = [[g]](pred5(ω),
pred4(ω)) = [[y]] and thus both assumptions are fulfilled with respect to x and y;
unfortunately pred1(ωω) = ω < ω5 + 3 = pred1(ω5 + 4). Proceeding in the same
way as above, we again derive a counterexample.

To overcome this problem, we introduce (in the next section) a notation sys-
tem for ordinals and use it, instead, as the domain of our interpretation functions.
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7 In Preparation

Following an approach taken by Gaisi Takeuti [32], we introduce an alternate no-
tation for ordinals below ε0. This notation will enjoy the desired weak monotonic-
ity property. We define a subset OT of terms over the signature {ω, +}. (The
function symbol ω is unary; the symbol + is varyadic.) We write ωα for ω(α).
In the definition of OT, we make use of an auxiliary subset P ⊂ OT.

Definition 3. The definition of OT and P proceeds by mutual induction:

1. 0 ∈ OT
2. If α1, . . . , αm ∈ P, then α1 + · · ·+ αm ∈ OT.
3. If α ∈ OT, then ωα ∈ P, and ωα ∈ OT.

The elements of OT are called ordinal terms and are denoted by lower-case Greek
letters. If no confusion can arise, we simply speak of ordinals.

To simplify reading, we abbreviate the term ω0 by 1. For the remainder of this
section, the expression “ordinal” will always refer to an element of OT, unless
stated otherwise.

It follows from the definition of the set OT that any object in OT different
from 0 can be written in the following form:

ωα1 + ωα2 + · · ·+ ωαn , (12)

where each of the α1, . . . , αn has the same property.6 However, due to the above
definition, α + 0 is not an ordinal, as 0 �∈ P. To cure this, we introduce a binary
operation + on OT: Let α, β ∈ OT be of form ωα1+· · ·+ωαn , β = ωβ1+· · ·+ωβm .
Then α + β is defined as ωα1 + · · · + ωαn + ωβ1 + · · · + ωβm . Otherwise, we
define α + 0 = 0 + α = α. We will not distinguish between the binary operation
+ and its varyadic rendering.

Definition 4 (Takeuti [32]). We inductively define an equivalence ∼ and a
partial order � so that they satisfy the following clauses:

1. 0 is the minimal element of �.
2. For α ∈ OT of form (12), assume α contains two consecutive terms ωαi and

ωαi+1 with αi+1 � αi. So, α has the form

· · ·+ ωαi + ωαi+1 + . . . .

Let β be obtained by removing the expression “ωαi + ” from α, so that β is
of the form

· · ·+ ωαi+1 + . . . .

Then α ∼ β.
6 This would not hold had we defined OT to be the set of terms over the signature
{ω, +}.



The Hydra Battle Revisited 15

3. Suppose α = ωα1 + · · · + ωαm , β = ωβ1 + · · · + ωβn, α1 � α2 � · · · � αm,
and β1 � β2 � · · · � βn, hold. (α � β means α � β or α ∼ β.) Then, α � β
if either αi � βi for some i ∈ [1, m] and αj ∼ βj for all j ∈ [1, i − 1], or
m > n and αi ∼ βi holds for all i ∈ [1, n].

Remark 3. Note that ordinal addition + is not commutative, not even up to the
equivalence ∼, as we have 1 + ω ∼ ω �∼ ω + 1. ��

We can identify the natural numbers N with the ordinals less than ω, as the
usual comparison of natural numbers coincides with the above partial order �
on ordinal terms less than ω. So, we freely write 1 + 1 as 2, 1 + 1 + 1 as 3, and
so on. By definition, for any α > 0 in OT, there exists a unique β ∈ OT with
α ∼ β so that β can be written as

ωβ1 + ωβ2 + · · ·+ ωβn with β1 � · · · � βn , (13)

where β1 � · · · � βn. If β is written in this way, we say that it is in normal-form.
The set of all ordinal terms in normal-form together with 0 is denoted NF. The
unique normal-form of a given ordinal term α is denoted NF(α).

Remark 4. Note that our definition of the ordinal notation system OT is non-
standard. Usually one identifies α ∈ OT and its normal-form NF(α) and instead
of ∼ simply the equality = is written.

Any α ∈ NF uniquely represents a set-theoretic ordinals in CNF. The following
lemma is immediate:

Lemma 6

1. The relation � is a linear partial order on NF.
2. The relation � is well-founded and otype(�) = ε0.

We extend the well-founded, linear order � on NF to a well-founded, partial
order � on OT. To simplify notation we denote the extended relation with the
same symbol, no confusion will arise from this. For α, β ∈ OT define: α � β, if
NF(α) � NF(β). It follows that � is a partial order and that α � β � γ and
α � β � γ each imply α � γ. The next lemma is a direct consequence of the
definitions; we essentially employ the fact that NF(α+β) = NF(NF(α)+NF(β)).

Lemma 7. Let α, β, γ ∈ OT.

1. α + β � α, β.
2. ωα � α.
3. If α � β, then ωα � ωβ.
4. If α � β, then γ + α � γ + β and α + γ � β + γ.
5. If α ∈ P and α � β, γ, then α � β + γ.
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The central idea of the above notation system is the separation of the identity of
ordinal terms (denoted by =) and the identity of their set-theoretic counterparts
(denoted by ∼). We will see in the next section that this pedantry is essential
for a successful definition of the interpretation functions.

Based on � and ∼, we define a partial order � and an equivalence relation ≡
on OT. We write N(α) to denote the number of occurrences of ω in α. Note that
N(n) = n for any natural number n, since 1 = ω0.

Definition 5. Let α, β ∈ OT. We set:

1. α � β if α � β, N(α) � N(β) or α ∼ β, N(α) > N(β) and
2. α ≡ β if α ∼ β, N(α) = N(β).

Define the quasi-order �≡: α �≡ β, if α (� ∪ ≡) β.

Example 3. Consider ω + ω2 and ω + 3. Then ω + ω2 � ω + 3, as NF(ω + ω2) =
ω2 � ω + 3 = NF(ω + 3) and N(ω + ω2) = 5 = N(ω + 3). On the other hand,
ω2 �� ω + 3 as N(ω + 3) = 5 > 3 = N(ω2). ��

This example shows that the relation ∼ is not compatible with the strict order �.

Lemma 8. The binary relation � is a well-founded order and otype(�) ≤ ε0.
Furthermore, for all n, m ∈ N, n � m iff n > m.

Proof. That � is a partial order is immediate from the definition. To verify
that � is well-founded with otype(�) ≤ ε0, it suffices to define an embedding
o : OT → CNF: o(α) := ωNF(α) + N(α). By case analysis on the definition of
�, one verifies that for all α, β ∈ OT, α � β implies o(α) > o(β). Assume
first that α � β and N(α) � N(β). Then, ωNF(α) + N(α) > ωNF(β) + N(β) is
immediate from the definition of the comparison > of set-theoretic ordinals. Now
assume α ∼ β and N(α) > N(β). Then, ωNF(α) + N(α) > ωNF(β) + N(β) follows
similarly.

The second half of the lemma is a direct result of the definition of � and the
definition of N. ��

The following is again a direct consequence of the definitions:

Lemma 9. Let α, β, γ ∈ OT.

1. If α � β, then ωα � ωβ.
2. If α � β, then γ + α � γ + β and α + γ �≡ β + γ.
3. α + β �≡ α, γ.
4. ωα � α.

Let p : N × N → N denote a fixed polynomial, strictly monotone in each
argument.
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Definition 6 (Predecessor). We define the set of n-predecessors of α induced
by p. Let α ∈ OT. Then

α[n] := {β | α � β and p(N(α), n) � N(β)} .

The notion of an n-predecessor stems from [12]. However, we follow the idea of
norm-based fundamental sequences; cf. [4].

Lemma 10. Let α ∈ OT and let δ denote a �-maximal element of α[n].

1. The set α[n] is finite.
2. For each β ∈ α[n]: δ �≡ β.

Proof. The first assertion is trivial. For the second, observe that it follows from
the definition of δ that for all β ∈ α[n], either δ � β, β ≡ δ, or β and δ are
incomparable with respect to �. We prove that the last case can never happen.
We assume α > 0, as otherwise the assertion follows trivially. Let β ∈ α[n] be
arbitrary but fixed, so that β, δ are incomparable.

The ordinals β and δ can only be incomparable if either of the following cases
holds: (i) δ ≺ β and N(β) < N(δ), or (ii) δ � β and N(β) > N(δ). As the cases
are dual, it suffices to consider the first one. Assume β ∈ N, then δ ∈ N and
N(β) = β � δ = N(δ), which contradicts the assumption N(δ) > N(β). Hence,
we can assume β � ω.

We define an ordinal term β∗ as follows: β∗ := (N(δ)− N(β)) + β. As β � ω,
β∗ ∼ β holds. Furthermore, N(β∗) = N(δ) > N(β), as N(β∗) = (N(δ) − N(β)) +
N(β) = N(δ). So, β∗ � β. We show that β∗ ∈ α[n]: α � β ∼ β∗ implies
α � β∗. And p(N(α), n) � N(δ) = N(β∗) implies p(N(α), n) � N(β∗). We derive
a contradiction to the assumption that δ is �-maximal. ��

By the above lemma a �-maximal element of α[n] is, up to the equivalence ≡,
unique. In the following, for each α ∈ OT and each n ∈ N, we fix an arbitrary
�-maximal element and denote it with Pn(α).

Lemma 11. Let α ∈ OT and suppose α � ω. Then N(Pn(α)) = p(N(α), n).

Proof. The proof follows the pattern of the proof of the previous lemma. ��

The following lemma explains why the pedantry in the definition of the set of
ordinal terms OT and the given definition of the partial order � is necessary:

Lemma 12. Let α, β ∈ OT, n ∈ N.

1. If α, β > 0 and α � β, then Pn(α) � Pn(β).
2. If α ≡ β, then Pn(α) ≡ Pn(β).
3. Suppose m > n. Then Pm(α) �≡ Pn(α).

We want to emphasize that the first property fails for the specific fundamental
sequence (αn)n∈N employed in the definition of the standard Hydra Battle;
cf. Definition 1: We have ω > m, but ωn = n �> m− 1 = (m)n for any m > n.
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Proof (of the lemma). We only show the first point; the arguments for the other
points are similar, but simpler. Assume α � β. First, we show the lemma for
the special-case, where α ∈ N. This assumption implies β ∈ N. Hence, Pn(α) =
α−1 � β−1 = Pn(β). Consider the case α � ω. We proceed by cases, according
to the definition of �:

1. Subcase α � β and N(α) � N(β): Then monotonicity of p implies that
p(N(α), n) � N(β) holds. Thus, β ∈ α[n]. By Lemma 10(2), we conclude
Pn(α) � β � Pn(β), which implies Pn(α) � Pn(β). By Lemma 11, we
get: N(Pn(α)) = p(N(α), n) � p(N(β), n) � N(Pn(β)). In summary, we see
Pn(α) � Pn(β).

2. Subcase α ∼ β and N(α) > N(β): From the assumptions we conclude
Pn(β) ∈ α[n], as α ∼ β � Pn(β) and p(N(α), n) > p(N(β), n) � N(Pn(β)).
Hence, Lemma 10 implies Pn(α) � Pn(β) or Pn(α) ≡ Pn(β). If the for-
mer case holds, the lemma is established. Assume the latter. By defin-
ition of ≡, we see that N(Pn(α)) = N(Pn(β)). On the other hand, we
obtain: N(Pn(α)) = p(N(α), n) > p(N(β), n) � N(Pn(β)). We have derived a
contradiction. ��

8 Termination

The purpose of this section is to prove Theorem 5. Based on the construction
given below, it is easy to see how to also prove Theorem 4; hence, we leave that
one to the reader.

8.1 Interpretation

Using the ordinal notation of the previous section, the termination proof is rela-
tively simple. Let F denote the signature of System D. We define the F -algebra
(A, ·�) and provide a proof that A is well-founded, which is easy, but – more
significantly – A is weakly monotone. The domain of A is the set

{(α, 1) | α ∈ OT} ∪ {(0, 0)} .

We define the quasi-order ·� on the pairs as follows:

(α, a) ·� (β, b) iff (α �≡ β ∧ a = b = 1) or (α �≡ β ∧ a > b) .

The following operations interpret the elements of F :

dA : (α, a), (β, b) �→ (PN(β)(α), 1) α �= 0
(0, a), (β, b) �→ (0, 0)

hA : (α, a), (β, b) �→ (0, 0)
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gA : (α, 1), (β, b) �→ (β + ωα, 1)
(0, 0), (β, b) �→ (0, 0)

eA : (α, a) �→ (α, 1)

SA : (α, a) �→ (α + 1, 1)

0A : (0, 1)

Define the strict order 	 by replacing �≡ by � in the above definition. The
orders ·� and 	 naturally extend to terms, denoted ·�A and 	A, respectively.
Fix the parameter in the definition of n-predecessors:

p(m, n) := (m + 1) · (n + 1) .

Let ·� denote the partial order induced by the quasi-order ·�. With the help
of Lemma 12, the following is not difficult to prove.

Lemma 13. The F-algebra (A, ·�) is weakly monotone and well-founded.

Lemma 14. For each rule l → r in D, we have l ·�A r, that is, A is a quasi-
model of D.

Proof. We consider only the rules (8) and (10), as it is easy to check the prop-
erties for the other rules.

1. Case d(g(x, y), z)→ g(d(x, z), e(y)): We have to show

dA(gA((α, a), (β, b)), (γ, c)) ·� gA(dA((α, a), (γ, c)), eA((β, b))) .

One of the following subcases holds (i) α > 0 (ii) α = 0. We may assume
subcase (i) holds. Assume otherwise; then it is not hard to see that the
right-hand side of the above equation rewrites to (0, 0). From this the claim
follows easily.
Accordingly, we obtain

dA(gA((α, 1), (β, b)), (γ, c)) = (Pn(β + ωα), 1) ·�
·� (β + ωPn(α), 1) = gA(dA((α, 1), (γ, c)), eA((β, b))) ,

for n = N(γ). We have to show that Pn(β+ωα) �≡ β+ωPn(α). By Lemma 7,
we obtain β + ωα � β + ωPn(α). By definition of the polynomial p and the
norm-function N, and Lemma 12 it suffices to observe:

(N(β + ωα) + 1)(n + 1) = (N(β) + N(α) + 2)(n + 1) �
� N(β) + 1 + (N(α) + 1)(n + 1) � N(β + ωPn(α)) .
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2. Case d(g(g(0, x), y), S(z))→ g(e(x), d(g(g(0, x), y), z)): We show

dA(gA(gA(0A, (α, a)), (β, b)), SA((γ, c))) ·�
·� gA(eA((α, a)), dA(gA(gA(0A, (α, a)), (β, b)), (γ, c))) ,

for all (α, a), (β, b), (γ, c) ∈ A. By definition, the left-hand side rewrites to

(PN(γ+1)(β + ωα+1), 1) ,

while the right side becomes

(PN(γ)(β + ωα+1) + ωα, 1) ,

and we have to show PN(γ)+1(β + ωα+1) �≡ PN(γ)(β + ωα+1) + ωα. By
Definition 6 and Lemma 7(5) we obtain:

β + ωα+1 � PN(γ)(β + ωα+1) + ωα .

Therefore, it suffices to show

(N(β + ωα+1) + 1)(N(γ) + 2) � N(PN(γ)(β + ωα+1) + ωα) ,

which follows by a simply calculation:

(N(β + ωα+1) + 1)(n + 2) � (N(β + ωα+1) + 1)(n + 1) + N(ωα+1) �
� N(Pn(β + ωα+1) + ωα) ,

with n = N(γ). ��

8.2 Dependencies

Finally, we are in position to prove Theorem 5, and employ a specific variant
of the dependency-pair method of [1]. (This choice of method is not critical;
equivalently, a proof by induction upto ε0 could be given, or some other method
employed.)

To keep this paper more-or-less self-contained, we first recall some basic defin-
itions and lemmas. We write � to denote the proper subterm relation and � for
(not necessarily proper) superterm. Let R be some rewrite system and denote
the set of all minimal non-terminating terms by T∞ (minimal in the sense of the
subterm relation).

Lemma 15. For every term t ∈ T∞ there exist a rewrite rule l → r ∈ R, a
substitution σ, and a non-variable subterm u of r, such that t

not top−−−−−→∗
R lσ

top−−→R
rσ � uσ and uσ ∈ T∞.

By the lemma, it is not difficult to see that any term in T∞ has a defined root
symbol. This, we exploit in the next definition.
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Let R be a rewriting system over a signature F . Let f̂ denote a fresh function
symbol with the same arity as f ∈ F and let t̂ denote f̂(t1, . . . , tn), for term
t = f(t1, . . . , tn). The set DP(R) of dependency pairs is defined as follows:

DP(R) := {l̂ → û | l → r ∈ R, r � u � l, root of u defined} .

The nodes of the dependency graph DG(R), for rewrite system R, are the
dependency pairs of R and there is an arrow from s → t to u → v if and
only if there exist substitutions σ and ρ such that tσ →R uρ . A dp-cycle
is a nonempty subset C of dependency pairs of DP(R) if for every two (not
necessarily distinct) pairs s → t and u→ v in C there exists a nonempty path in
C between them. By the above lemma and employing the notion of dependency
graph, nontermination of R implies the existence of an infinite sequence of the
following form:

t1 →∗
R t2 →C t3 →∗

R t4 →C t5 · · · ,

where ti ∈ {t̂ | t ∈ T∞}, C ⊆ DG(R) and the rules in C are applied infinitely
often. Such a sequence is called C-minimal. Thus, to prove termination it suffices
to verify that no such sequences can exist.

Theorem 6 (Arts & Giesl [1]). A finite term-rewriting system R is termi-
nating if no C-minimal sequence exists for any dp-cycle in DG(R).

An argument filtering is a mapping ρ that associates with every function symbol
either an argument position or a list of argument positions. The signature Fρ

contains m-ary function symbols fρ for any f ∈ F with ρ(f) = [i1, . . . , im].
The mapping ρ naturally gives rise to a function ρ : T (F ,V) → T (Fρ,V).

Theorem 7 (Arts, Giesl & Ohlebusch [16]). Let R be a term-rewriting
system and C be a dp-cycle in DG(R). If there exists an argument filtering and
a reduction pair (
, >) such that ρ(R) ⊆ 
, ρ(C) ⊆ 
 ∪ >, and ρ(C) ∩ > �= ∅,
then there are no C-minimal rewrite sequences.

8.3 Reduction

The proof depends on the following:

Lemma 16. The pair ( ·�A, 	A) forms a reduction pair.

Proof. One has to show that ·�A is a quasi-order that is closed underF -operations
and substitutions, that 	A is well-founded and closed under substitutions, and
– finally – that ·�A ◦ 	A ⊆ 	A. The first two items follow directly from the
definitions. Therefore, we only have to verify that, for all (α, a), (β, b), (γ, c) ∈ A,
if (α, a) ·� (β, b) 	 (γ, c), then also (α, a) 	 (γ, c).

Without loss of generality, assume a = b = c = 1: Assume otherwise, then
a = b = c = 0 is impossible, as (β, 0) 	 (γ, 0) cannot hold. Hence, the only
possibility is a = b = 1 and c = 0. But, by definition of A, this implies γ = 0
and clearly (α, 1) 	 (0, 0).
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Given that a = b = c = 1 holds, the assumption specializes to α �≡ β � γ.
We proceed by case analysis on α �≡ β. Either α � β and N(α) � N(β) or
α ∼ β and N(α) � N(β). In both cases, α � β holds. Hence, by transitivity of
�, α � γ follows. ��

Proof (of Theorem 5). Consider the dependency pairs of D:

ĥ(e(x), y) → ĥ(d(x, y), S(y)) (14)

ĥ(e(x), y) → d̂(x, y) (15)

d̂(g(g(0, x), y), S(z))→ ĝ(e(x), d(g(g(0, x), y), z)) (16)

d̂(g(g(0, x), y), S(z))→ d̂(g(g(0, x), y), z) (17)

d̂(g(x, y), z)→ ĝ(d(x, z), e(y)) (18)

d̂(g(x, y), z)→ d̂(x, z) (19)
ĝ(e(x), e(y)) → ĝ(x, y) (20)

We construct the dependency graph DG(D):

(14) (15)

(16)

(17)

(18)
(19)

(20)

The above interpretation extends to the extra dependency-pair functions f̂ as
follows: We set f̂A equal to fA, with the exception of ĥ, which we define via

ĥA((α, a), (β, b)) = (α, a) .

Due to Theorems 6 and 7, it suffices to define suitable combinations of argu-
ment filterings and reduction pairs for cycles in DP(D). First, we consider the
cycle {14} and reduction pair ( ·�A, 	A). Due to Lemma 14, it remains to show
that

ĥ(e(x), y) 	 ĥ(d(x, y), S(y)) . (21)

Let a : V → A denote an arbitrary assignment with [a]A(x) = (α, a), [a]A(y) =
(β, b). If α > 0, then (21) becomes (α, 1) 	 (Pn(α), 1), where n = N(β) and
we have to show α � Pn(α), which is a consequence of Definition 6. Assume
otherwise α = 0. Then (21) becomes (0, 1) ·� (0, 0), which follows from the
definition of the relation 	.
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With respect to the remaining dp-cycles, it is easy to see how a suitable
combination of argument filterings and reduction pairs should be defined. In
particular, note that these cycles can also be handled by applying the subterm
criterion iteratively; cf. [20]. ��

9 While Hydra Do

In this section, we convert the functional Hydra program L into an imperative,
while program in stages. First, we replace each function with a similarly named
procedure call, and the tail-recursive calls with iteration:

procedure H(x):
n := 0
while x �= nil do

n := n + 1
D(n, x)

procedure F (n, y, x):
for i := 1 to n do

x := cons(y, x)

procedure D(n, x):
u := car(x)
if u = nil
then x := cdr(x)
else if car(u) = nil

then F (n, cdr(u), cdr(x))
else D(n, u)

x := cons(u, cdr(x))

Using a stack s, implemented as a list (pushing via cons, popping via car),
for the recursive calls to G, and combining all the procedures (x is the input
hydra), we get:

n := 0
while x �= nil do

n := n + 1
u := car(x)
if u = nil
then x := cdr(x)
else s := nil

while car(u) �= nil do
s := cons(s, cdr(x))
x := u
u := car(x)

for i := 1 to n do
x := cons(cdr(u), x)

while s �= nil do
x := cons(x, cdr(s))
s := car(s)

It is easy to see that the inner loops all terminate. To show that the outer one
does, one would need to show that x, qua ordinal, decreases with each outer
iteration.
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The list operations can be arithmetized by using a pairing function, such as
cons(x, y) := (x+y+1)2+x. Then nil := 0, car(z) := z−�

√
z�2, and cdr(z) :=

�
√

z�2+�
√

z�−z−1. (Any other set of pairing and projection functions would do
just as well.) With this in mind, and with a tiny bit of algebraic manipulation, our
final, wholly arithmetic, hard-to-prove-terminating while program is as follows:

n := 0
while x > 0 do

n := n + 1
u := x− �√x�2
if u = 0
then x := �

√
x� − 1

else s := 0
while u > �

√
u�2 do

s := s + (s + �
√

x�2 + �
√

x� − x)2

x := u
u := x− �

√
x�2

for i := 1 to n do
x := (�

√
u�+ x)2 + �

√
u� − 1

while s > 0 do
x := x + (x + �√s�2 + �√s� − s)2

s := s− �
√

s�2

Finally, the (integer-valued) truncated square-root �
√

z� can be computed
each time by a simple loop, searching for the largest integer whose square is no
more than z:

n := 0
while x > 0 do

n := n + 1
y := 0; while y2 + 2y ≤ x do y := y + 1
if x = y2

then x := y − 1
else s := 0

r := 0; while r2 + 2r ≤ x− y2 do r := r + 1
while x > y2 + r2 do

y := 0; while y2 + 2y ≤ x do y := y + 1
s := s + (s + y2 + y − x)2

x := x− y2

r := 0; while r2 + 2r ≤ x− y2 do r := r + 1
for i := 1 to n do x := r2 + r − 1
while s > 0 do

r := 0; while r2 + 2r ≤ s do r := r + 1
x := x + (x + r2 + r − s)2

s := s− r2

Further simplifications are possible.
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10 The Sky’s the Limit

David Gries [18] has averred that for deterministic (or bounded nondetermin-
istic) programs, since the number of steps of any terminating program is just
some integer-valued function t(x̄) that depends only on the program inputs x̄, it
is preferable to prove termination by showing “that each execution of the loop
body decreases t by at least 1”, than to use complicated well-founded orderings.
This begs the issue, however, since the proof such a t exists for a program like
Hydra requires transfinite induction up to ε0, as we have seen above.

It is not hard to conjure up bigger battles, for example ones in which trees
also grow in height. The following one – meant to require Γ0 – is from [6]:

Gn(x)→ Gn+1(pnx)
pn〈x, y, z〉 → 〈x, y, pnz〉

pn+1〈A, y, z〉 → 〈A, pn+1y, rn〈B, 〈A, y, z〉, z〉〉
pn〈x, y, z〉 → y

pn〈B, y, z〉 → rn〈B, y, z〉
rn+1〈B, y, z〉 → 〈B, pn+1y, rn〈B, y, z〉〉

rn〈x, y, z〉 → z

〈x, y, z〉 → 〈x, y, z〉

The A nodes are meant to act lexicographically; the B nodes, more like multisets.
The bar acts like e of the Hydra system. Regarding the relevance to computer
science of the (least) impredicative ordinal Γ0, see [14].

Moreover, Γ0 is by no means the end of the games. See [25] for rewrite systems
that formalize the Hydra Battle up to the small Veblen ordinal, the maximal
order type of the lexicographic path order [8]. Even larger hydras (so called
Buchholz Hydræ) have been considered by Wilfried Buchholz [3].
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Abstract. In contrast to the current general way of developing tools
for proving termination automatically, this paper intends to show an
alternative program based on using on the one hand the theory of term
orderings to develop powerful and widely applicable methods and on the
other hand constraint based techniques to put them in practice.

In order to show that this program is realizable a constraint-based
framework is presented where ordering based methods for term rewriting,
including extensions like Associative-Commutative rewriting, Context-
Sensitive rewriting or Higher-Order rewriting, as well as the use of rewrit-
ing strategies, can be put in practice in a natural way.

1 Introduction

In this paper we show how to translate into a constraint solving problem any ter-
mination proof using the Monotonic Semantic Path Ordering (MSPO) [BFR00]
and its variants for Associative-Commutative (AC) rewriting [BR03], Higher-
Order (HO) rewriting [BR01] and Context-Sensitive (CS) rewriting [Bor03]. By
using the definition of MSPO a disjunction of constraints is obtained, such
that, if any of these constraints can be solved, then the TRS is proved to be
terminating.

Our constraints have the same semantics as the ones obtained in the de-
pendency pair method (DP) [AG00], and, in particular, one of the constraints
obtained from the definition of the MSPO coincides with the one given by DP
method (and it is unclear whether this one is always the best to be solved).
Moreover, since both kind of constraints share the same semantics, we can reuse
all techniques developed to solve DP constraints like the DP graph or many
other further developments [AG00, GTSK04, HM05, GTSKF06].

The framework we propose was first described in [Bor03]. A similar framework
for the DP-method was independently proposed in [GTSK04]. These results
show that MSPO can be seen as an ordering-based way to understand the DP-
method, and that the key point for the success of this method is the use, in
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practice, of ordering constraints, for which a wide variety of sound solvers have
been developed.

Additionally, we study the application of our techniques to prove termination
of innermost rewriting. In order to reuse our framework, the TRS is modified by
adding constraints to the rules, which approximate the restrictions imposed by
the strategy. A constrained rule can be applied if the substitution satisfies the
constraint. Hence, a TRS is innermost terminating if its constrained version is
terminating.

A constrained TRS is terminating if all instances of each constrained rule
(i.e. the instances satisfying the constraint) are included in a reduction ordering.
Therefore, we can apply MSPO but taking the constraints of the rules into
account. This is done by inheriting the constraints when applying MSPO. As
a result, we obtain a disjunction of constrained constraints, which, to avoid
confusion, will be called decorated constraints (note that the constraints coming
from the rules are applied to the ordering constraints coming from MSPO).
Using these decorated constraints we can cover all techniques applied in the DP
method for innermost rewriting. Furthermore, these decorated constraints can
be used to store other information which can be relevant for the termination
proof. The same ideas applied to the innermost strategy can be applied, as well,
to other strategies that can be approximated by means of constrained rules, like,
for instance, rewriting with priorities [vdP98].

Finally, we show, as an example, how our framework also extends to the
higher-order version of the MSPO, which can also be done for the AC-version
and the CS-version.

These results should be seen as a proof of the thesis that developing results at
the ordering level and implementing and applying them at the constraint level is
an appropriate program to obtain a general purpose tool for proving termination.

Our method has been implemented in a system called Termptation which
automatically proves termination of rewriting and innermost rewriting. The im-
plementation does not cover any of the extensions of MSPO to associativity-
commutativity, higher-order or context-sensitive rewriting, which is planed for
future development.

Basic notions and definitions are given in section 2. In sections 3 and 4 we
revise the dependency pair method and the monotonic semantic path ordering
respectively. Section 5 is devoted to present and apply our constraint frame-
work. In section 6 we adapt our framework to deal with innermost rewriting
and in section 7 we consider higher-order rewriting. Some conclusions are given
in section 8. An extended version of these results and all proofs can be found
in [Bor03].

2 Preliminaries

In the following we consider that F is a set of function symbols, X a set of
variables and T (F ,X ) is the set of terms built from F and X . Let s and t be
arbitrary terms in T (F ,X ), let f be a function symbol in F and let σ be a
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substitution. A (strict partial) ordering � is a transitive irreflexive relation. It is
monotonic if s � t implies f(. . . s . . .) � f(. . . t . . .), and stable under substitution
if s � t implies sσ � tσ. Monotonic orderings that are stable under substitutions
are called rewrite orderings. A reduction ordering is a rewrite ordering that is
well-founded : there are no infinite sequences t1 � t2 � . . .

A term rewrite system (TRS) is a (possibly infinite) set of rules l → r where
l and r are terms. Given a TRS R, s rewrites to t with R, denoted by s →R t,
if there is some rule l → r in R, s|p = lσ for some position p and substitution σ
and t = s[rσ]p. The defined symbols D are the root symbols of left-hand sides
of rules. All other function symbols are called constructors.

A TRS R is terminating if there exists no infinite sequence t1 →R t2 →R . . .

Thus, the transitive closure +→R of any terminating TRS is a reduction ordering.
Furthermore, reduction orderings characterize termination of TRSs, i.e. a rewrite
system R is terminating if and only if all rules are contained in a reduction
ordering �, i.e., l � r for every l → r ∈ R.

Given a relation �, the multiset extension of � on finite multisets, denoted
by ��, is defined as the smallest transitive relation containing X ∪ {s} �� X ∪
{t1, . . . , tn} if s � ti for all i ∈ {1 . . . n}. If � is a well-founded ordering on
terms then �� is a well-founded ordering on finite multisets of terms.

A quasi-ordering � is a transitive and reflexive binary relation. Its inverse is
denoted by �. Its strict part � is the strict ordering � \ � (i.e, s � t iff s � t
and s �� t). Its equivalence ∼ is � ∩ �. Note that � is the disjoint union of �
and ∼, and that if = denotes syntactic equality then � ∪ = is a quasi-ordering
whose strict part is �. � is monotonic if f(. . . , s, . . .) � f(. . . , t, . . .) whenever
s � t. An ordering �2 is compatible with a quasi-ordering �1 if �1 · �2⊆�2.

Let �1 be a quasi-ordering and let �2 be an ordering. Then 〈�1,�2〉 is a
compatible ordering pair if �2 and �1 are stable under substitutions, �2 is com-
patible with �1 and �2 is well-founded.

A precedence �F is a well-founded quasi-ordering on F . It is extended to a
quasi-ordering on terms as s �F t iff top(s) �F top(t).

3 The Dependency Pair Method

For every defined symbol f ∈ D, we introduce a fresh tuple symbol f# (some-
times written as F for simplicity) with the same arity. If t = f( t ) then t#

denotes the term f#( t ). If l → r ∈ R and t is a subterm of r with a defined
root symbol, then 〈l#, t#〉 is a dependency pair of R. The set of all dependency
pairs of R is denoted DP (R). An R-chain is a sequence 〈s1, t1〉, 〈s2, t2〉, . . . of
pairs in DP (R) such that there is a substitution σ where tiσ →∗

R si+1σ.

Theorem 1 (Termination Criterion [AG00]). A TRS R is terminating if
and only if no infinite R-chain exists.

Definition 1. A pair 〈�I ,�q〉 is called a DP-reduction pair if �I is monotonic,
and 〈�I ,�q〉 is a compatible ordering pair.
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Then a TRS R is terminating if there is a DP-reduction pair 〈�I ,�q〉 such that
l �I r for every rule in R and s �q t for every dependency pair 〈s, t〉 in DP (R).

Many refinements and improvements for solving the obtained constraints
have been described. See [GTSK04] for a general framework for solving DP-
constraints.

4 The Monotonic Semantic Path Order

Let us now recall the definition of the semantic path ordering (SPO) [KL80],
with a slight modification, since we use a compatible ordering pair instead of a
quasi-ordering as underlying (or base) ordering:

Definition 2. Given a compatible ordering pair 〈�Q,�q〉, the SPO, denoted as
�spo, is defined as s = f(s1, . . . , sm) �spo t iff

1. si �spo t, for some i = 1, . . . , m, or
2. s �q t = g(t1, . . . , tn) and s �spo ti for all i = 1, . . . , n, or
3. s �Q t = g(t1, . . . , tn) and {s1, . . . , sm} ��spo{t1, . . . , tn},

where �spo is defined as �spo ∪ =.

The semantic path ordering is well-defined, but, in general, it is not monotonic,
even when �Q is monotonic (in fact, the same problem appears if �Q is
monotonic).

Definition 3. We say that �I is monotonic on �Q (or �Q is monotonic wrt.
�I) if s �I t implies f(. . . s . . .) �Q f(. . . t . . .) for all terms s and t and
function symbols f .

A pair 〈�I ,�Q〉 is called a reduction pair if �I is monotonic, �Q is well-
founded, �I, �Q and �Q are stable under substitutions and �I is monotonic on
�Q.

A triplet 〈�I ,�Q,�q〉 is called a reduction triplet if �I is monotonic, �I

is stable under substitutions, 〈�Q,�q〉 is a compatible ordering pair and �I is
monotonic on �Q.

Note that in particular, if 〈�I ,�Q〉 is a reduction pair then 〈�I ,�Q,�Q〉 is a
reduction triplet.

Now we define the monotonic semantic path ordering (MSPO) [BFR00]:

Definition 4. Let 〈�I ,�Q,�q〉 be a reduction triplet. The corresponding
monotonic semantic path ordering, denoted by �mspo, is defined as:

s �mspo t if and only if s �I t and s �spo t

Theorem 2. �mspo is a reduction ordering. Furthermore, MSPO characterizes
termination.
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5 Reduction Constraints

In this section we present the constraint framework where our termination prob-
lems are translated to. We will first present the syntax and semantics of our
constraints. Then, we show how the termination problems are translated into
constraint problem through the definition of the MSPO. Then, we present some
transformation techniques in order to solve the obtained constraints and show
how the DP method is included in ours. Finally, we show how all other trans-
formation techniques applied in the DP framework apply to ours.

5.1 Syntax and Semantics

Definition 5. A reduction constraint is a pair 〈C1, C2〉, where C1 is a conjunc-
tion of positive literals over the relation !1 and C2 is conjunction of positive
literals over �2 and !2.

Now we provide the notion of satisfiability for reduction constraints, which is
based on reduction triplets. Hence, it is easy to show that these kind of con-
straints are the ones obtained by applying MSPO.

Definition 6. A reduction constraint 〈C1, C2〉 is satisfiable iff there exists a
reduction triplet 〈≥1,≥2, >2〉 such that ≥1 satisfies C1 and 〈≥2, >2〉 satisfies
C2, i.e. ≥2 satisfies all literals s !2 t in C2 and >2 satisfies all literals s �2 t
in C2.

The following definition and theorem allow us to connect the reduction triplet
semantics given above for reduction constraints with the R-chain semantics given
for the constraints obtained by the dependency pair method.

In what follows, we will speak about the relation !1 in C1, or simply !1, as
the relation defined by all instances of all s !1 t in C1. We have not used a new
relation symbol to ease the reading. The same will be done for the relation !2

in C2 (or simply !2) and the relation �2 in C2 (or simply �2).

Then, we use
	λ ∗−→
1 for the reflexive and transitive closure of the monotonic

with non-empty contexts (and stable under substitution) closure of !1 in C1.

Definition 7. Let 〈C1, C2〉 be a reduction constraint. A pair 〈s, t〉O, with O
being either !2 or �2, is said to be in C2 iff s O t occur in C2 (up to renaming
of variables). It is said to be strict if O is �2.

A sequence of pairs of terms 〈s1, t1〉O1 , 〈s2, t2〉O2 , . . . is a chain in 〈C1, C2〉 if

every 〈si, ti〉Oi is in C2 and there exists a substitution σ such that tiσ
	λ ∗−→
1

si+1σ holds for all consecutive pairs 〈si, ti〉Oi and 〈si+1, ti+1〉Oi+1 in the se-
quence.

Lemma 1. If C1 = {l !1 r | ∀l → r ∈ R} the notion of R-chain using depen-
dency pairs coincides with the notion of chain using our pairs 〈s, t〉O.

Theorem 3. A reduction constraint 〈C1, C2〉 is satisfiable iff there is no chain
in 〈C1, C2〉 with infinitely many strict pairs.
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From this theorem it follows that the constraints obtained by the dependency
pair method are reduction constraints, as we will show in detail in section 5.4.

5.2 Translating MSPO-Termination of Rewriting into Reduction
Constraint Solving

Using MSPO, we can translate our termination problem into a reduction con-
straint solving problem. This translation is simply based on applying the defin-
ition of MSPO, and SPO, to the rules of the TRS.

Let R be a set of rules {li → ri | 1 ≤ i ≤ n}. We consider the following initial
MSPO-constraint:

l1 �mspo r1 ∧ . . . ∧ ln �mspo rn

Which is transformed by applying the definition of MSPO into a conjunction of
two constraints, CI and CSPO

CI : l1 �I r1 ∧ . . . ∧ ln �I rn

CSPO : l1 �spo r1 ∧ . . . ∧ ln �spo rn

Now the definition of SPO given in Section 4 is applied to the second part of
the constraint. This is formalized by means of correct constraint transformation
rules:

s �spo t =⇒ # if s ≡ t
s �spo t =⇒ s �spo t if s �≡ t
x �spo t =⇒ ⊥
s �spo x =⇒ # if s �≡ x ∈ V ars(s)
s = f(s1, . . . , sm) �spo g(t1, . . . , tn) = t =⇒

s1 �spo t ∨ . . . ∨ sm �spo t ∨
(s �q t ∧ s �spo t1 ∧ . . . ∧ s �spo tn)∨
(s �Q t ∧ {s1, . . . , sm} ��spo{t1, . . . , tn})

where {s1, . . . , sm} ��spo{t1, . . . , tn} is translated into a constraint over �spo

and �spo.
It is easy to see that these transformation rules are correct, terminating and

confluent. Moreover, the resulting normal form is an ordering constraint over
�q and �Q which represents the conditions on �q and �Q that are necessary
to show that CSPO is true. Then after computing the disjunctive normal form,
the initial constraint CSPO has been translated into a disjunction of constraints
over �q and �Q each one of the form

CQ : s1 �q t1 ∧ . . . ∧ sp �q tp ∧ s′1 �Q t′1 ∧ . . . ∧ s′q �Q t′q

where none of the terms are variables.
Now we have to find a reduction triplet 〈�I ,�Q,�q〉 satisfying CI and one of

these constraints CQ, which means that this is a reduction constraint satisfaction
problem as the following theorem states.
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Theorem 4. Let R be a TRS and let CI be the constraint over �I and let
C1

Q ∨ ... ∨ Ck
Q be the disjunction of constraints over �q and �Q obtained by

applying the MSPO method. Then R is terminating iff some reduction constraint
〈CI , C

i
Q〉 is satisfiable.

From the previous theorem, in order to prove termination, we have to show
that some reduction constraint 〈CI , C

i
Q〉 is satisfiable. To this end, we have to

provide some correct (wrt. satisfiability) constraint transformation techniques
which allow us to simplify the constraints until they can directly be shown to be
satisfiable by building an actual reduction triplet (or pair).

From now on, we will assume that we have a reduction constraint 〈C1, C2〉,
which is transformed step by step, preserving satisfiability, into one or sev-
eral simpler reduction constraints of the form 〈S1, S2〉. After this simplification
process, each resulting reduction constraint 〈S1, S2〉 is proved satisfiable sepa-
rately by building an appropriate reduction quasi-ordering � (or a compatible
ordering pair 〈�,�〉 where � is monotonic), which includes all literals in S1 and
S2. Note that, if � is a reduction quasi-ordering and � is the strict part of it,
then 〈�,�,�〉 is a reduction triplet.

5.3 Constraint Transformations

In this section we propose some basic techniques for simplifying the reduction
constraint 〈C1, C2〉.

A first simple example of such a simplification, is obtained by using a well-
founded precedence on the set of symbols. Thus every literal s �2 t or s !2 t
can be removed if the top symbol of s is strictly greater than the top symbol of
t in the precedence. Moreover, the remaining literals s �2 t or s !2 t in C2 have
to fulfil that the top symbol of s is greater than or equal to the top symbol of t
in the precedence.

Being precise, if �F is a precedence, such that top(s) �F top(t) for every
s �2 t or s !2 t in C2, then we can simplify the constraint C2 by using the
following rules:

Precedence simplification rules

s �2 t =⇒ # if top(s) �F top(t)
s !2 t =⇒ # if top(s) �F top(t)

By building appropriate reduction triplets, we can easily show the correctness
of this transformation.

Transformation 1. Let 〈C1, C2〉 be a reduction constraint and let 〈C1, C
′
2〉 be a

reduction constraint obtained by applying the precedence simplification rules wrt.
some precedence �F such that top(s) �F top(t) for every s �2 t or s !2 t in
C2. Then 〈C1, C2〉 is satisfiable if and only if 〈C1, C

′
2〉 is satisfiable.

Moreover, if we choose adequately the precedence we can apply an optimal sim-
plification with respect to this precedence-based transformation.



Orderings and Constraints: Theory and Practice of Proving Termination 35

Now we present a transformation technique, based on renamings of top func-
tion symbols (as already done in the dependency pair method). This transforma-
tion is not a simplification in the sense that no literal is removed, but it allows
us to apply, in the future, a different treatment to the symbols when they occur
on top of a term in C2 (which will ease the proof of satisfiability of the final
reduction constraint obtained after all the simplification process).

Transformation 2. (Renaming) Let 〈C1, C2〉 be a reduction constraint and let
C′

2 the result of renaming all function symbols f heading a term in C2 by a new
symbol f#. Then 〈C1, C2〉 is satisfiable iff 〈C1, C

′
2〉 is satisfiable.

5.4 Reduction Constraints and the DP Method

In this section we show that the constraints obtained in our method have the
same semantics as the ones produced by the dependency pair method. In partic-
ular, we show that one of the constraints obtained in the disjunction when using
the MSPO constraint method coincides, after applying the precedence and the
renaming transformations, with the one given by the DP method.

The following results states that the constraint obtained by the dependency
pair method is a reduction constraint.

Theorem 5. Let R be a TRS and let C1 be the constraint containing li !1 ri

for every rule li → ri in R and let C2 be the constraint containing s �2 t for
every dependency pair 〈s, t〉 in DP (R). Then R is terminating iff the reduction
constraint 〈C1, C2〉 is satisfiable.

Now, using always case 2 of the definition of SPO, except when the term on the
right is a variable (where we apply case 1), and applying precedence transforma-
tion (with defined symbols greater than constructors) and finally the renaming
transformation we get the constraint given by the DP method. Moreover, it is
not difficult to prove that there is a reduction triplet 〈�I ,�Q,�q〉 if and only if
there is a DP-reduction pair 〈�I ,�q〉 solving the resulting reduction constraint.

Theorem 6. The dependency pair method is included in the MSPO constraint
method.

The following example shows a case in which the constraint obtained by DP-
method is, in principle, not the easiest one to be solved among all constraints
generated by MSPO.

Example 1. The following system is an automatic translation of a prolog pro-
gram that computes the Ackermann function.

ack in(0, x)→ ack out(s(x))
ack in(s(y), 0)→ u11(ack in(y, s(0)))

u11(ack out(x)) → ack out(x)
ack in(s(y), s(x)) → u21(ack in(s(y), x), y)
u21(ack out(x), y) → u22(ack in(y, x))

u22(ack out(x)) → ack out(x)
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This system has been proved included in the MSPO with a constraint which
for the rule

u21(ack out(x), y) → u22(ack in(y, x))

contains the following literals which correspond to the application of case 2 first
and then case 3 of the SPO:

u21(ack out(x), y) �q u22(ack in(y, x))
u21(ack out(x), y) �Q ack in(y, x)

Note that with the DP-method both, at least initially, would be strict.

Similarly, the constraint framework defined in [GTSK04] is basically the same
as the one described in this paper, except on the fact that, since we extract
our constraints from the definition of MSPO, our constraint C2 may include
non-strict inequalities from the beginning.

Due to this equivalence between both frameworks all sound transformation
techniques described in [GTSK04] (called there processors), including , for in-
stance, the DP graph or many other ideas developed in [AG00, HM05, GTSKF06]
can be used in our framework and vice versa.

6 Innermost Rewriting: Constrained Rules

In innermost rewriting, a subterm is a redex only if all arguments are in normal
form. Therefore, we can impose this condition on the left-hand sides of the rules.
In this section we show a way to keep this condition aside of the rules and
then use this information to prove innermost termination with the reduction
constraint framework.

Definition 8. Let R be a TRS. Then s
i−→R t is an innermost rewriting step if

s = u[lσ], t = u[rσ], l → r ∈ R, and all the proper subterms of lσ are in normal
form, that is, lσ is irreducible in non-top positions.

As a first consequence of the above definition, when using innermost rewriting,
all the rules in a TRS which has a proper subterm l|p such that for any normal
substitution σ, l|pσ is a redex, can be eliminated.

Note that we can still have rules which have a proper subterm l|p such that
l|pσ is a redex for some normal substitution σ, but not in general.

To prove innermost termination of a TRS, we have to show that any innermost
reduction is finite, which can be proved by showing that any innermost reduction
is included in a well-founded ordering.

Theorem 7. A rewrite system R over a set of terms T (F ,X ) is innermost ter-
minating if and only if there is a well-founded, monotonic ordering over T (F ,X )
such that for every l → r ∈ R and for all substitutions σ such that lσ is irre-
ducible in non-top positions, lσ � rσ.
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Note that if a term t is irreducible then any subterm of t is also irreducible. Thus,
the condition ”lσ is irreducible in non-top positions” in the above theorem can
also be written as ”liσ is irreducible for all li argument of l”.

This condition of irreducibility can be expressed by adding a constraint to the
rules. For instance, given the rules

f(x, g(x)) → f(1, g(x))
g(1)→ g(0)

the innermost condition can be expressed by the constrained rules

f(x, g(x)) → f(1, g(x)) | {irred(x), irred(g(x))}
g(1)→ g(0) | {irred(1)}

Let us formalize the notion of constrained rule and its use in innermost
rewriting.

Definition 9. Given a rule l → r and a conjunction K of literals build on a
given set of predicates, we say that l → r | K is a constrained rule.

A rewrite step using a constrained rule l → r | K is a rewrite step using l → r
which is only applicable for those substitutions σ satisfying K, i.e., s → t using
the constrained rule l → r | K iff s = u[lσ]→ u[rσ] = t for some context u and
substitution σ solution of K.

Now we show that by using constrained rewriting with irreducibility constraints
we can characterize the innermost rewriting strategy.

Definition 10. Let R be a set of rules. The set Ri of constrained rules for
innermost rewriting contains for each rule l → r ∈ R a constrained rule l →
r | Ki(l) where Ki(f(t1, . . . , tn)) = {irredR(ti) | ∀i ∈ {1, . . . , n}} and irredR(t)
means that t is irreducible with respect to R.

Irreducibility constraints are used in the CARIBOO system [FGK02], by means
of abstraction constraints. However, our aim when using these constraints is to be
able to apply the same constraint solving techniques as in the innermost version
of the DP method, like, for instance, when building the approximated innermost
DP graph.

Lemma 2. Let R be a set of rules. Then, s
i−→ t using l → r ∈ R if and only

if s → t using the constrained rewrite rule l → r | Ki(l) ∈ Ri

This notion of constrained rewriting can be generalized other relations like or-
derings.

Definition 11. Given two terms s and t and a set of literals K, s � t | K
denotes that sσ � tσ for all solutions σ of K; and s � t | K denotes that
sσ � tσ for all solutions σ of K.

The following theorem for innermost termination follows from Theorem 7 using
Lemma 2 and Definition 11.
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Theorem 8. Let � be a reduction ordering. A TRS R is innermost terminating
iff l � r | Ki(l) holds for every rule l → r ∈ R.

Corollary 1. A TRS R is innermost terminating iff there exists a reduction
triplet 〈�I ,�Q,�q〉 s.t. l �mspo r | Ki(l), for every l → r ∈ R.

In order to be able to use constrained rules in our method, first we have to adapt
the notion of reduction constraints.

6.1 Decorated Reduction Constraints

We will now increase the expressive power of our reduction constraints 〈C1, C2〉
by attaching conditions to the pairs in C1 and C2. These conditions will contain
all or part of the information coming from the constraints of the rules.

Definition 12. A decorated literal (or pair) l | D is a literal (pair) l with an
attached condition D.

A decorated reduction constraint is a tuple 〈C1, C2〉, where C1 is a conjunction
of decorated positive literals over the relation !1 and C2 is a conjunction of
decorated positive literals over �2 and !2.

Definition 13. A decorated reduction constraint 〈C1, C2〉 is satisfiable iff there
exists a reduction triplet 〈≥1,≥2, >2〉 such that ≥1 satisfies C1 and 〈≥2, >2〉
satisfies C2, i.e., ≥2 satisfies all decorated literals s !2 t | D in C2 and >2

satisfies all decorated literals s �2 t | D in C2.

From this, all definitions and results given for reduction constraints can be
extended in a natural way to decorated reduction constraint (see [Bor03] for
details).

6.2 Proving Termination of Constrained Rules by MSPO Using
Decorated Reduction Constraints

We can translate the termination problem of a set of constrained rules into an
ordering constraint solving problem using decorated reduction constraints. This
translation is simply based on applying the definition of MSPO, and SPO, to a
set of constrained rules.

Let R be a set of constrained rules {(li → ri | Ki) | 1 ≤ i ≤ n}. We consider
the following initial MSPO-constraint:

l1 �mspo r1 | K1 ∧ . . . ∧ ln �mspo rn | Kn

This decorated ordering constraint is transformed by applying the definition of
MSPO into the conjunction of two decorated ordering constraints, CI and CSPO

CI : l1 �I r1 | K1 ∧ . . . ∧ ln �I rn | Kn

CSPO : l1 �spo r1 | K1 ∧ . . . ∧ ln �spo rn | Kn
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Now the definition of SPO given in Section 4 is applied to the second part of
the constraint. This is formalized by means of correct constraint transformation
rules:

s �spo t | K =⇒ ⊥ if K is false
s �spo t | K =⇒ # if s ≡ t
s �spo t | K =⇒ s �spo t | K if s �≡ t
s �spo t | K =⇒ ⊥ if K is false
x �spo t | K =⇒ ⊥
s �spo x | K =⇒ # if s �≡ x ∈ V ars(s)
s = f(s1, . . . , sm) �spo g(t1, . . . , tn) = t | K =⇒

s1 �spo t | K ∨ . . . ∨ sm �spo t | K ∨
(s �q t | K ∧ s �spo t1 | K ∧ . . . ∧ s �spo tn | K) ∨
(s �Q t | K ∧ {s1, . . . , sm} ��spo{t1, . . . , tn} | K)

where {s1, . . . , sm} ��spo{t1, . . . , tn} | K is translated into a decorated ordering
constraint over �spo and �spo.

As for the case of (non-constrained) rewriting, it is easy to see that these
transformation rules are correct, terminating and confluent. Moreover, the re-
sulting normal form is a decorated ordering constraint over �q and �Q. Then
after computing the disjunctive normal form, the initial constraint CSPO has
been translated into a disjunction of constraints over �q and �Q each one of the
form

CQ : s1 �q t1 | K ′
1 ∧ . . .∧ sp �q tp | K ′

p ∧ s′1 �Q t′1 | K ′
p+1 ∧ . . .∧ s′q �Q t′q | K ′

q

where none of the terms are variables.
Note that all K ′

j coincides with some of the Ki coming from the rules R (i.e.,
no new constraints are generated).

Now, as for the non-decorated case, we have to find a reduction triplet satis-
fying CI and one of these decorated constraints CQ.

Theorem 9. Let R be a set of constrained rules and let CI be the constraint
containing li �I ri | Ki for every constrained rule li → ri | Ki ∈ R, and let
C1

Q∪ ...∪Ck
Q be the disjunction of decorated ordering constraints over �q and �Q

obtained by applying the MSPO constraint method for constrained termination.
Then the set of constrained rules R is terminating iff some decorated reduction
constraint 〈CI , Ci

Q〉 is satisfiable.

In particular, for innermost termination, we have the following corollary.

Corollary 2. Let R be a TRS and let Ri be the set of constrained rules l �
r | Ki(l) for every l → r ∈ R. Then R is innermost terminating iff 〈CI , Ci

Q〉 is
satisfiable for some decorated reduction constraint 〈CI , Ci

Q〉 obtained by applying
the MSPO method to Ri.

Now, as seen for (non-constrained) rewriting, in order to prove termination we
have to show that some decorated reduction constraint 〈CI , Ci

Q〉 is satisfiable. All



40 C. Borralleras and A. Rubio

transformations known for non-decorated constraints can also be used for trans-
forming decorated reduction constraints, although, in some cases, the transfor-
mation can be improved by using the additional information of the decorated
pairs (see [Bor03] for details).

7 Higher-Order Rewriting

In this section we extend the results on first-order rewriting to the higher-order
case. The aim of this section is to show the generality of our approach and how
simple is to extend it to other kind of rewriting. Due to the lack of room we
will present a very simple form of the monotonic higher-order semantic path
ordering. Moreover, we will consider a very simple type system, which is enough
to present our ideas. See [JR07, BR01] for more powerful versions.

7.1 Types, Signatures and Terms

We consider terms of a simply typed lambda-calculus generated by a signature
of higher-order function symbols.

The set of types T is generated from the set VT of type variables (considered
as sorts) by the constructor → for functional types in the usual way. As usual,
→ associates to the right. In the following, we use α, β for type variables and
σ, τ, ρ, θ for arbitrary types.

A signature F is a set of function symbols which are meant to be algebraic
operators, equipped with a fixed number n of arguments (called the arity) of
respective types σ1 ∈ T, . . . , σn ∈ T, and an output type σ ∈ T. A type decla-
ration for a function symbol f will be written as f : σ1 × . . . × σn → σ. Type
declarations are not types, although they are used for typing purposes.

The set T (F ,X ) of raw algebraic λ-terms is generated from the signature F
and a denumerable set X of variables according to the grammar rules

T := X | (λX : T.T ) | @(T , T ) | F(T , . . . , T ).
Terms of the form λx : σ.u are called abstractions, while the other terms are
said to be neutral. For sake of brevity, we will often omit types. @(u, v) de-
notes the application of u to v. The application operator is allowed to have a
variable arity. As a matter of convenience, we may write @(u, v1, . . . , vn) for
@(@(. . .@(u, v1) . . .), vn), assuming n ≥ 1.

7.2 Typing Rules

Typing rules restrict the set of terms by constraining them to follow a precise
discipline. Environments are sets of pairs written x : σ, where x is a variable
and σ is a type. Our typing judgments are written as Γ � M : σ if the term M
can be proved to have the type σ in the environment Γ with the following type
system

Variables:
x : σ ∈ Γ

Γ � x : σ

Functions:
f : σ1 × . . . × σn → σ ∈ F

Γ � t1 : σ1 . . . Γ � tn : σn

Γ � f(t1, . . . , tn) : σ
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Abstraction:
Γ ∪ {x : σ} � t : τ

Γ � (λx : σ.t) : σ → τ

Application:
Γ � s : σ → τ Γ � t : σ

Γ � @(s, t) : τ

7.3 Higher-Order Rewriting and Termination

The rewrite relation considered in this paper is the union of the one induced by a
set of higher-order rewrite rules and the β-reduction rule @(λx.v, u) −→β v{x �→
u}, both working modulo α-conversion. For simplicity reasons, in this work we
do not consider η-reduction, although all results can be extended to include it.

A higher-order term rewrite system is a set of rewrite rules R = {Γ � li →
ri}i, where li and ri are higher-order terms such that li and ri have the same
type σi in the environment Γ .

Given a term rewriting system R, a term s rewrites to a term t at position
p with the rule Γ � l → r and the substitution γ, written s

p−→
l→r

t, or simply

s →R t, if s|p = lγ and t = s[rγ]p (modulo α-conversion).
Higher-order reduction orderings are basically reduction orderings

(monotonic, stable under substitutions and well-founded) operating on typed
higher-order terms and including β-reduction. A higher-order rewrite system R
is terminating if there is a higher-order reduction ordering � such that l � r for
all rules l → r in R.

7.4 The Higher-Order Semantic Path Ordering (HOSPO)

From now on, to ease the reading, we will omit the environments in judgments.

Definition 14. Given a compatible ordering pair on higher-order typed terms
〈�Q,�q〉 (where none of �Q and �q needs to include β-reduction), the HOSPO,
denoted as �hspo, is defined as s : τ �hspo t : τ iff

1. f ∈ F , s = f(s1, . . . , sm) and si �hspo t, for some i = 1, . . . , m, or
2. f, g ∈ F ,s = f(s1, . . . , sm) �q t = g(t1, . . . , tn) and for all i = 1, . . . , n,

either s �hspo ti or sj �hspo t for some j = 1, . . . , m, or
3. f, g ∈ F , s = f(s1, . . . , sm) �Q t = g(t1, . . . , tn) and
{s1, . . . , sm} ��hspo{t1, . . . , tn}, or

4. f ∈ F , s = f(s1, . . . , sm), t = @(t1, . . . , tn), and for all i = 1, . . . , n,
either s �hspo ti or sj �hspo t for some j = 1, . . . , m, or

5. s = @(s1, s2), t = @(t1, t2), {s1, s2} ��hspo{t1, t2}, or
6. s = λx.u, t = λx.v, u �hspo v, or
7. s = @(λx.u, v) and u{x �→ v} �hspo t

where �hspo is defined as �hspo ∪ α-conversion.

Definition 15. Let 〈�I ,�Q,�q〉 be a reduction triplet on higher-order typed
terms. The monotonic higher-order semantic path ordering (MHOSPO), denoted
by �mhspo, is defined as

s �mhspo t if and only if s �I t and s �hspo t
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Theorem 10. �mhspo is a higher-order reduction ordering.

Finally we show how to translate a MHOSPO termination proof into a (higher-
order) reduction constraint problem 〈C1, C2〉. The constraint C1 is obtained as
before from �I . To obtain C2 we use the definition of HOSPO.

This is formalized by means of correct constraint transformation rules like (we
only outline the ones that are different from those in 5.2):

s = f(s1, . . . , sm) �hspo g(t1, . . . , tn) = t =⇒∨
si:τ

si �hspo t ∨
(s �q t

∧
ti:τ ′(s �hspo ti ∨

∨
sj :τ sj �hspo ti)) ∨

(s �Q t ∧ {s1, . . . , sm} ��hspo{t1, . . . , tn})
s = f(s1, . . . , sm) �hspo @(t1, . . . , tn) = t =⇒∧

ti:τ ′(s �hspo ti ∨
∨

sj :τ
sj �hspo ti)

...

But, note that, due to the type conditions, the transformation rule
s �hspo x =⇒ # if s �≡ x ∈ V ars(s)

does not hold in general, and hence there might be terms on the right hand side
of literals in C2 being a variable.

Example 2. Filter. To make it simpler we only consider a type variable α.
Let VT = {α}, X = { x, xs : α, P : α → α } and
F = {[] : α, cons : α× α → α, T rue, False : α, filter : (α → α)× α→ α,
iffil : α× (α→ α)× α× α→ α}

filter(P, [])→ []
filter(P, cons(x, xs)) → iffil(@(P, x), P, x, xs)
iffil(True, P, x, xs)→ cons(x, filter(P, xs))
iffil(False, P, x, xs)→ filter(P, xs)

The constraint C1 is obtained as before:
filter(P, []) �I [] ∧ filter(P, cons(x, xs)) �I iffil(@(P, x), P, x, xs) ∧
iffil(True, P, x, xs) �I cons(x, filter(P, xs)) ∧
iffil(False, P, x, xs) �I filter(P, xs)
and as one of the constraints for C2 we have:
filter(P, cons(x, xs)) �q iffil(@(P, x), P, x, xs) ∧
iffil(True, P, x, xs) �q cons(x, filter(P, xs)) ∧
iffil(True, P, x, xs) �Q filter(P, xs) ∧ iffil(False, P, x, xs) �Q filter(P, xs)

Now using the precedence transformation and then the renaming transforma-
tion we obtain
Filter(P, cons(x, xs)) �q Iffil(@(P, x), P, x, xs) ∧
Iffil(True, P, x, xs)�Q Filter(P, xs) ∧ Iffil(False, P, x, xs)�Q Filter(P, xs)

Finally, the reduction constraint is solved by taking �I=�Q and �q as the
strict part of �Q, which is defined by a simple polynomial interpretation like
|nil| = 0; |cons(x1, x2)| = x2 + 1; |filter(x1, x2, x3)| = x3;
|iffil(x1, x2, x3, x4)|=x4+1; |Filter(x1, x2, x3)|=x3; |Iffil(x1, x2, x3, x4)|=x4.
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8 Conclusions and Future Work

Termptation (available at http://www.lsi.upc.es/~albert) is a fully auto-
mated system for proving termination of first-order term rewrite systems which
follows the termination proof techniques described in this paper.

The current implementation of the system has to be improved in several ways.
On the one hand, by incorporating the state of the art techniques for solving re-
duction constraints. On the other hand, by extending the system to handle other
reduction strategies, as well as AC-rewriting, CS-rewriting and HO-rewriting.

We are especially interested in the HO-case, since we consider that it is a
difficult case were our working program of developing theory at the level of
orderings and practice at the level of constraints may be the right one to build
a powerful termination tool.
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Abstract. We describe in this paper an inductive proof method for
properties of reduction relations. The reduction trees are simulated with
proof trees generated by narrowing and an abstraction mechanism. While
narrowing simulates reduction, abstraction relies on the induction prin-
ciple to replace subterms by variables representing specific reduced forms
that trivially satisfy the property to be proved. The induction ordering
is not given a priori, but defined with ordering constraints, incrementally
set during the proof. Abstraction constraints are used to control the nar-
rowing mechanism, well-known to easily diverge. The proof method is
briefly illustrated on various examples of properties.

1 Introduction

When working with infinite sets in verification or theorem proving, several con-
cepts have been proved quite useful: induction, constraints, abstraction, narrow-
ing. Equation solving, inductive theorem proving, deduction with constraints,
model checking, abstract interpretations, reachability analysis are a few domains
in which they have been introduced as essential features. In particular, they are
often used in the context of reduction relations, and especially rewriting rela-
tions, that can model many kinds of deduction or computation processes, thanks
to the power of rewriting logic [49] and rewriting calculus [9]. We propose in this
paper a method that combines these different ingredients to prove properties
often required for reduction relations.

The main idea of the proof principle is to proceed by induction on a well-
founded set with a noetherian ordering �, assuming that for any t′ such that
t � t′, the proposition P holds for t′, and then deducing that P holds for t. Unlike
classical induction proofs, where the ordering is given, we do not need to define
it a priori. We only have to check its existence by ensuring the satisfiability of
ordering constraints incrementally set along the proof.

The class of properties expressed by propositions P that may be handled will
be made more precise later on, but in order to support intuition, we can already
mention some of them:
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– termination under a strategy: the proposition P for a given term t is “all
S-derivations issued from t terminate”, where a S-derivation is a sequence
of rewriting under a strategy S,

– weak termination proofs: P is “there is a terminating S-derivation issued
from t”,

– definition completeness and existence of constructor forms: P is “there is a
derivation issued from t, leading to a constructor form”.

Such properties will serve as examples all along this paper to illustrate the
different notions in our general approach. We rely on our previous works on
termination under the innermost [18], outermost [19], and local strategies [17],
weak termination under the innermost strategy [20] and existence of constructor
forms [26]. Further examples are being explored and may give an idea of other
ways to apply the proof method for different properties:

– (weak-)reducibility of requests to specific answers: for any given ground term
t headed by a defined symbol, “t has a derivation leading to a constant in a
given set”,

– termination of probabilistic rewriting: for a given t, “the average length of
probabilistic derivations issued from t is finite”,

– termination of a transition system: for a given initial state s, “all transition
sequences starting from s terminate”.

Some of these properties may be or have been proved with alternative
methods, which are based for instance on automata techniques for reachabil-
ity problems, or on reduction orderings or dependency pairs for termination.
For properties like termination under the outermost strategy, weak termina-
tion, or reducibility to a constructor form when the reduction relation does not
terminate, to our knowledge, our approach is the first one to provide a proof
technique.

The paper is organized as follows: after introducing the background in Sec-
tion 2, we present in Section 3 the inductive proof principle of our approach.
Section 4 develops the basic concepts of the inductive proof mechanism based
on abstraction and narrowing, and the involved constraints. Section 5 presents
the proof procedure and states the general theorem with its conditions of appli-
cation. Section 6 shows how the proof of a weak property with this method also
provides a way to constructively select interesting derivations. Applicability of
the approach and related work are addressed in Section 7 and 8 respectively.

2 The Background

We assume the reader familiar with the basic definitions and notations of algebras
and term rewriting given for instance in [2,15,14,4]. For simpler notations, we
only consider here unsorted terms, but the framework could be generalized to
order-sorted signatures as defined for instance in [29,50].
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Abstract Reduction Systems. An abstract reduction system (M,→) is given
by a set and a reduction relation→⊆M×M. A derivation is a chain of elements
a1 → a2 → . . . an ; a1 and an are respectively called the source and the target of
the derivation. The element a is irreducible iff there exist no b such that a → b.

Terms, Substitutions, Instantiations. T (F ,X ) is the set of terms built from
a finite set F of function symbols f with arity n ∈ N (denoted f : n), and a
set X of variables denoted x, y . . .. V ar(t) is the set of variables of the term
t. T (F) is the set of ground terms (without variables). Symbols of arity 0 are
called constants. Positions in a term are represented as sequences of integers.
The empty sequence ε denotes the top position. Let p and p′ be two positions.
The position p is a (strict) prefix of p′ (and p′ suffix of p) if p′ = pλ, where λ is
a (non-empty) sequence of integers. If p is a position in t, then t[t′]p denotes the
term obtained from t by replacing the subterm at position p by the term t′.

A substitution is an assignment from X to T (F ,X ), written σ = (x �→
t) . . . (y �→ u). It uniquely extends to an endomorphism of T (F ,X ). The re-
sult of applying σ to a term t ∈ T (F ,X ) is written σ(t) or σt. The domain
of σ, denoted Dom(σ) is the finite subset of X such that σx �= x. Id denotes
the identity substitution. The composition of substitutions σ1 followed by σ2 is
denoted σ2 ◦ σ1 or simply σ2σ1.

An (A-)instantiation is an assignment θ from X to an F -algebra A, which
extends to terms by setting θ(f(t1, . . . , tn)) = fA(θ(t1), . . . , θ(tn)), where fA
denotes the interpretation of f in A.

An F -equality is an unoriented pair of terms of T (F ,X ). A set E of
F -equalities defines a congruence relation on terms denoted =E . The E-
subsumption ordering on terms is defined as follows: t ≤E t′ if there exists a
substitution σ such that t′ =E σ(t). The relations =E and ≤E are extended to
substitutions. An E-unifier of two terms t and t′ is a substitution σ such that
σ(t) =E σ(t′). A complete set of E-unifiers of t and t′ is denoted CSUE(t, t′).
When E is empty, the CSUE(t, t′) has at most one element, called most general
unifier (mgu) when it exists.

Orderings. An ordering � on T (F ,X ) (and more generally on a set M) is
noetherian iff there is no infinite decreasing chain for this ordering. It is monotone
iff for any pair of terms t, t′ of T (F ,X ), for any context f(. . . . . .), t � t′ implies
f(. . . t . . .) � f(. . . t′ . . .). It has the subterm property iff for any t of T (F ,X ),
f(. . . t . . .) � t. It is stable by substitution iff for every substitution σ, t � t′

implies σt � σt′. For F and X finite, if � is monotone and has the subterm
property, then it is noetherian [43].

Rewriting. A set R of rewrite rules is a set of pairs of terms of T (F ,X ),
denoted l → r, such that l �∈ X and V ar(r) ⊆ V ar(l). In this paper, we only
consider finite sets of rewrite rules.

The rewriting relation induced by R is denoted by →R (→ if there is no
ambiguity on R), and defined by s → t iff there is a substitution σ and a
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position p in s such that s|p = σl for some rule l → r of R, and t = s[σr]p. This
is written s →p,l→r,σ

R t where either p, l → r, σ or R may be omitted; s|p is
called a redex. The reflexive transitive closure of the rewriting relation induced
by R is denoted by ∗→R.

In the rewriting context, the set of function symbols is often split into a set C
of constructors and a set D of defined functions. C and D are either arbitrarily
given, or defined w.r.t. the rewrite system R: a function symbol is a constructor
iff it does not occur in R at the top position of a left-hand side of rule, and a
defined function symbol otherwise. A constructor term is a term built only with
constructors.

The notion of strategy is fundamental for rewriting and can be defined in a
general way, slightly different from the one used in [4]: a rewrite strategy S for
the rewrite systemR is a subset of the set of all derivations ofR. The application
of a strategy S on a term t is denoted S(t) and defined as the set of the targets
t′ of all derivations of source t in S. When a rewrite step belongs to a derivation
of the strategy S, it is denoted by →S .

A strategy could be described extensively or more suitably by a strategy lan-
guage like in ELAN [40] Stratego [57], Tom [52,3] or more recently Maude [11]
The semantics of such a language is naturally described in the rewriting cal-
culus [9,10]. A strategy language involves rules as basic elements and offers
strategy combinators and iterators to build more complex strategy expressions.
Well-known rewriting strategies allow controlling the application of rules over
subterms, performing term traversal and normalizing terms: in this paper, we
consider in particular the innermost, outermost and local strategies on operators
whose definitions can be found in [27] and in [52].

For any term of a term algebra, t terminates (under the strategy S) iff every
rewriting derivation (under the strategy S) starting from t is finite. If t

∗→ t′ and
t′ is irreducible (under the strategy S), then t′ is called a normal form of t (under
the strategy S). Remark that given t, its normal form (under the strategy S)
may be not unique.

A rewrite theory on T (F ,X ) is a triple (F , E,R) where E is a finite set of
equalities and R a finite set of rewrite rules. The relation →R/E on T (F ,X )
is the sequential composition of relations =E ;→R; =E. It induces a relation
→R/E on the quotient algebra T (F)/ =E by [t]E →R/E [t′]E iff t →R/E t′.
The relation →R,E on T (F ,X ) is defined by s →R,E t iff there is a substitution
σ and a position p in s such that s|p =E σl for some rule l → r of R, and
t = s[σr]p.

Narrowing. Let R be a rewrite system on T (F ,X ). A term t is narrowed into
t′, at the non-variable position p, using the rewrite rule l → r of R and the
substitution σ, when σ is a most general unifier of t|p and l, and t′ = σ(t[r]p).
This is denoted t �p,l→r,σ

R t′ where either p, l → r, σ or R may be omitted. It
is always assumed that there is no variable in common between the rule and the
term, i.e. that V ar(l) ∩ V ar(t) = ∅. Assuming that E has a finitary complete
unification algorithm, the narrowing relation �R,E on T (F ,X ) is defined by
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t �p,l→r,σ
R,E t′ iff there exist a non-variable position p, a rewrite rule l → r of R

and a substitution σ ∈ CSUE(t|p, l), and t′ = σ(t[r]p).
In this paper, the sets M of interest are F -algebras A, and in particular

the terms algebras T (F), T (F)/ =E and T (F ,X ). The reduction relations →
are the rewriting relations →R, →R/E , →R,E , rewriting relations according to
strategies (innermost, outermost, local), or the narrowing relations �R, �R,E .

3 The Inductive Proof Process

From now on, we assume that the set M is non empty and that there is a
noetherian ordering � defined on elements of M. For proving the proposition
P for any element t of M, we proceed by induction on M with the ordering �
as noetherian induction relation, assuming that for any t′ such that t � t′, the
proposition P holds for t′.

3.1 P -Canonical Forms

All properties addressed in this paper can be expressed by propositions P in-
volving the reduction relation → and specific elements of M characterized by a
decidable property: for termination proofs, this is the property of irreducibility
w.r.t the reduction relation, for completeness proofs, this is the syntactic prop-
erty to be built only with constructors. We distinguish those particular elements
of M by calling them P -canonical elements. Then a strong proposition is stated
on any given element t of M as: on every derivation of source t, there is a P -
canonical element, while a weak proposition is: there is a derivation of source t
having a P -canonical element. This leads to the definition of P -canonical form
of an element.

Definition 1. Let (M,→) be an abstract reduction system, P a proposition to
be proved on M and T ⊆ M a decidable set of P -canonical elements. A P -
canonical form t⇓ of a term t is an element of T belonging to a derivation of
source t.

3.2 Covering Patterns and Simulation

Our goal is to inductively prove a proposition P on M. For that, we simulate
(M,→) with another abstract system (N , �), by establishing a correspondence
between the elements ofM andN and between the reduction relations→ and �.

In the following, we choose for N the set of terms with variables T (F ,X ).
Let us first define a set of patterns which are flat terms, i.e. terms of the form
f(x1, . . . , xn) with f ∈ F . We relate patterns to elements of M by considering
all their possible instantiations θ(f(x1, . . . , xn)). More generally, for a term u
with variables, we denote by 〈u〉 the set {θ(u) | θ ∈ Φ} where Φ is the set of
all instantiations of T (F ,X ) into M. This definition extends to set of terms
U = {u1, . . . , uk} in the following way: 〈U〉 = {〈u1〉, . . . , 〈uk〉}.
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Then the correspondence between the reduction relations → and � is ex-
pressed with a simulation. According to the property to be proved, from a given
term, only relevant reduction steps have to be considered. For example, for strong
proposition statements, the set of P -relevant reduction steps from a term is the
set of all reduction steps from this term. For weak proposition statements, the
set of P -relevant reduction steps from a term is reduced to any reduction step
from the term.

Definition 2 (P -simulation). Let (M,→) and (N , �) be two abstract re-
duction systems. (N , �) is a P -simulation of (M,→) iff there is a relation
L ⊆ N × M, such that for every P -relevant reduction step a1 → a2, with
a1, a2 ∈ M, there is a corresponding reduction step b1 � b2, with b1, b2 ∈ N ,
and b1La1, b2La2.

3.3 Lifting Rewriting Trees into Proof Trees

Let us now observe the derivation tree of → starting from an element t ∈ M
which is any instance of a term f(x1, . . . , xm) for some function symbol f ∈ F ,
and variables x1, . . . , xm.

This derivation tree is simulated, using a lifting mechanism, by a proof tree,
developed from f(x1, . . . , xm) on T (F ,X ), by alternatively using two main oper-
ations, namely narrowing and abstraction, adapted to the property to be proved
and to the considered reduction relation. Narrowing simulates the reduction pos-
sibilities of elements ofM, according to the instances of the narrowed terms. The
abstraction process simulates sequences of reductions steps in the derivations,
which are valid under the induction hypothesis. More precisely, it consists of re-
placing subterms by special variables, denoting any of their P -canonical forms,
without computing them. It is performed on subterms whose instances can be
assumed to satisfy the proposition P by induction hypothesis.

The schematization of derivation trees is achieved through constraints. Each
node of the developed proof trees is composed of a current term of T (F ,X ) and
a constraint progressively built along the successive abstraction and narrowing
steps. A node schematizes the set of elements of M given by the instantiations
of the current term, that are solutions of the constraint.

The constraint is in fact composed of two kinds of formulas: ordering con-
straints, set to warrant the validity of the inductive steps, and abstraction con-
straints combined to narrowing substitutions, which effectively characterize sets
of elements of M. The latter are actually useful for controlling the narrowing
process, well known to easily diverge.

3.4 The Overall Mechanism

Let us now consider a proof tree whose root is the pattern f(x1, . . . , xm) and
see how we can schematize the reduction relation on instances of f(x1, . . . , xm),
with abstraction and narrowing applied on a current term t of the proof tree:
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– first, some subterms tj of the current term t of the proof tree are selected: if
θf(x1, . . . , xm) � θtj for the induction ordering � and for every θ solution
of the constraint associated to t, we may suppose, by induction hypothesis,
that the θtj satisfy the proposition P . The tj are then replaced in t by
abstraction variables Xj representing respectively any of their P -canonical
forms tj⇓. Reasoning by induction allows us to suppose the existence of the
tj⇓ without explicitly computing them;

– second, narrowing the resulting term u = t[Xj ]j∈{i1,...,ip} (where i1, . . . , ip
are the positions of the abstracted subterm tj in t) into terms v, according
to the possible instances of the Xj . In general, the narrowing step of u is
not unique, but we consider a set of narrowing steps simulating the rele-
vant reductions of the instantiations of u (characterized by the constraint
associated to u).

Then the problem of proving P on the instantiations of t is reduced to the
problem of proving P on the instantiations of v. If θf(x1, . . . , xm) � θv for
every instantiation θ solution of the constraint associated to v, by induction
hypothesis, θv is supposed to satisfy P . Otherwise, the process is iterated on v,
until getting a term t′ such that either θf(x1, . . . , xm) � θt′, or θt′ satisfies P .

The proof procedure given in this paper is described by deduction rules ap-
plied with a special control Strat−Rules, that depends on the studied reduction
relation, and on the proposition to be proved. Applying the deduction rules,
according to the strategy, to the initial term f(x1, . . . , xm) builds a proof tree.
Branching is produced by the different possible narrowing steps. The proposi-
tion P is established when the procedure terminates because the deduction rules
do not apply anymore and all terminal nodes of all proof trees represent terms
satisfying P .

4 Abstraction, Narrowing, and the Involved Constraints

Let us now formalize the concepts required for our technique, and illustrate them
with some particular cases.

4.1 Ordering Constraints

The induction ordering is constrained along the proof by imposing constraints
between terms that must be comparable, each time the induction hypothesis is
used in the abstraction mechanism. So inequalities of the form t > u1, . . . , um

are accumulated and are called ordering constraints.

Definition 3 (ordering constraint). An ordering constraint is a pair of terms
of T (F ,X ) denoted by (t > t′). It is satisfiable if there is an ordering �, such
that for every instantiation θ whose domain contains Var(t) ∪ Var(t′), we have
θt � θt′. Then we say that � satisfies (t > t′). A conjunction C of ordering
constraints is satisfiable if there is an ordering satisfying all conjuncts. The empty
conjunction, always satisfied, is denoted by #.
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As we are working with a lifting mechanism on the proof trees with terms of
T (F ,X ), we directly work with an ordering �N on T (F ,X ) such that t �N u
implies on M that θt � θu, for every θ solution of the constraint associated to
u. Any ordering �N on T (F ,X ) satisfying the above constraints and which is
stable by instantiation fulfills the previous requirements on M. For convenience,
the ordering �N is also written �.

Satisfiability of a constraint conjunction C of the above form is undecidable
in general. But a sufficient condition is to find an ordering � on T (F ,X ) which
is stable by instantiation and such that t � t′ for any constraint t > t′ of C.

When M is T (F), we often try to solve the constraints of C by finding
simplification orderings. This is a well-known problem in rewriting. The simplest
and most automatable way to proceed is to test simple existing orderings like
the subterm ordering, the Recursive Path Ordering, or the Lexicographic Path
Ordering. This is often sufficient for the constraints considered here: thanks to
the power of induction, they are often simpler than for termination methods
directly using orderings for orienting rewrite rules. If these simple orderings
are not powerful enough, automatic solvers like Cime 1 can provide adequate
polynomial orderings.

4.2 Abstraction

To abstract a term t at positions j ∈ {i1, . . . , ip}, we assume that the t|j are
such that every instantiation θt|j verifies the proposition P . It then reduces to
a P -canonical form θt|j⇓, and we replace the t|j by abstraction variables Xj

representing respectively any of these possible P -canonical forms. Let us define
these special variables more formally.

Definition 4. Let XA be a set of variables disjoint from X . Symbols of XA are
called abstraction variables. Instantiations are extended to T (F ,X ∪XA) in the
following way: for any instantiation θ such that Dom(θ) contains a variable
X ∈ XA, θX is a P -canonical form.

Definition 5 (term abstraction). The term t[t|j ]j∈{i1,...,ip} is abstracted into
the term u (called abstraction of t) at positions {i1, . . . , ip} iff u =
t[Xj ]j∈{i1,...,ip}, where the Xj , j ∈ {i1, . . . , ip} are fresh distinct abstraction
variables.

Term abstraction may involve restrictions related to the choice of abstraction
positions according to the proposition P and the reduction relation →. This is
the case for instance for termination proofs under the outermost strategy, where
i is an abstraction position only if there is no redex at prefix positions of i.

The proposition P is proved by reasoning on terms with abstraction variables,
i.e. in fact on terms of T (F ,X ∪XA). Ordering constraints are extended to pairs
of terms of T (F ,X ∪ XA). When subterms t|j are abstracted by Xj, we state
constraints on abstraction variables, called abstraction constraints, to express
1 Available at http://cime.lri.fr/
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that their instantiations can only be P -canonical forms of the corresponding in-
stantiations of t|j . Initially, they are of the form t⇓ = X where t ∈ T (F ,X ∪XA),
and X ∈ XA, but we will see later how they are combined with the substitutions
used for the narrowing process.

4.3 Narrowing

After abstraction of the current term t into t[Xj ]j∈{i1,...,ip}, we check whether the
possible instantiations of t[Xj]j∈{i1,...,ip} are reducible, according to the possible
values assigned to the Xj . This is achieved by narrowing t[Xj ]j∈{i1,...,ip}.

To simulate the reduction relation on M, a specific narrowing relation � is
chosen in such a way that (T (F ,X ∪ XA), �) is a P -simulation of (M,→).

Let us give examples of such simulations. In these examples, the relation L
used in Definition 2 is the (E-)subsumption ordering≤, possibly with restrictions
expressed via the constraints.

The Case of Rewriting Under Strategies. Let (M,→) be (T (F),→S). The
narrowing relation depends on the considered strategy S and the usual definition
needs to be refined.

First, in the innermost and outermost cases, to ensure P -simulation, an S-
narrowing redex in t must correspond to an S-rewriting redex in a ground in-
stance of t. This is the case only if, in the rewriting chain of the ground instance
of t, there is no rewriting redex anymore in the part of the term brought by the
instantiation. In the innermost case, this condition is fulfilled thanks to normal-
ized instances of abstraction variables. In the outermost case, the condition is
ensured by a variable renaming performed before narrowing [27].

Then, among the ground instances of t, there may be innermost (resp. outer-
most) rewriting positions p for some instances, and p′ for some other instances,
such that p′ is a suffix (resp. a prefix) of p. So, when narrowing at some position
p, the set of corresponding ground instances of t is defined by excluding the
ground instances that would be narrowable at some suffix (resp. prefix) position
p′ of p. These positions p′ are said S-better than p.

The narrowing steps of a given term t are thus computed in the following way.
After applying the variable renaming to t, we look at every non-variable position
p of t such that t|p unifies with the left-hand side of a rule using a substitution
σ. The position p is a narrowing position of t, iff there is no S-better position p′

of t such that σt|p′ unifies with a left-hand side of rule. Then we look for every
S-better position p′ than p in t such that σt|p′ narrows with some substitution
σ′ and some rule l′ → r′, and we set a constraint to exclude these substitutions.
So the substitutions used to narrow a term have in general to satisfy a set of
disequalities coming from the negation of previous substitutions. To formalize
this point, we need the following notations and definitions.

In the following, we identify a substitution σ = (x1 �→ t1) . . . (xn �→ tn) on
T (F ,X ∪XA) with the finite set of solved equations (x1 = t1) ∧ . . .∧ (xn = tn),
also denoted by the equality formula

∧
i(xi = ti), with xi ∈ X ∪ XA, ti ∈
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T (F ,X ∪ XA), where = is the syntactic equality. Similarly, we call negation σ
of the substitution σ the formula

∨
i(xi �= ti).

Definition 6 (constrained substitution). [27] A constrained substitution
σ is a formula σ0 ∧

∧
j

∨
ij

(xij �= tij ), where σ0 is a substitution.

This leads to an adapted definition of narrowing.

Definition 7 (S-narrowing). [27] A term t ∈ T (F ,X ∪ XA) S-narrows into
a term t′ ∈ T (F ,X ∪ XA) at the non-variable position p of t, using the rule
l → r ∈ R with the constrained substitution σ = σ0 ∧

∧
j∈[1..k] σj , which is

written t �S
p,l→r,σ t′ iff

σ0(l) = σ0(t|p) and t′ = σ0(t[r]p)

where σ0 is the most general unifier of t|p and l and σj , j ∈ [1..k] are all most
general unifiers of σ0t|p′ and a left-hand side l′ of a rule of R, for all positions
p′ which are S-better than p in t.

The following lifting lemma generalizes [51] and states that (T (F ,X ), �) P -
simulates (T (F), →S).

Lemma 1 (S-lifting Lemma). [27] Let R be a rewrite system. Let s ∈
T (F ,X ), α a ground substitution such that αs is S-reducible at a non variable
position p of s, and Y ⊆ X a set of variables such that V ar(s) ∪Dom(α) ⊆ Y.
If αs →S

p,l→r t′, then there exist a term s′ ∈ T (F ,X ) and substitutions β, σ =
σ0 ∧

∧
j∈[1..k] σj such that:

1. s �S
p,l→r,σ s′,

2. βs′ = t′,
3. βσ0 = α[Y]
4. β satisfies

∧
j∈[1..k] σj

where σ0 is the most general unifier of s|p and l, for j ∈ [1..k] the σj are the
most general unifiers of σ0s|p′ with a left-hand side l′ of a rule of R, for all
positions p′ which are S-better than p in s.

The Case of C-Reducibility. Let (M,→) be (T (F),→R). There we need a
covering property of the narrowed term by narrowing substitutions (see [26]),
and the following lemma.

Lemma 2. [26] Let R be a rewrite system, u a term of T (F ,XA), and Σ the
set of narrowing substitutions of u for R. If Σ is covering u, then every ground
instance αu of u is such that αu →p,l→r,βσ

R t′, for some ground substitution β,
and we have u �p,l→r,σ

R v for some v of T (F ,XA), βσ = α on any variable set
Y ⊇ V ar(u) ∪Dom(α), and t′ = βv.
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The Case of Transition Systems. In rewriting logic, a concurrent system
is axiomatized as a rewrite theory modulo some equational axioms with system
transitions described by rewrite rules. As defined in [50], a topmost rewrite
theory is such that E-equivalence classes of ground terms are made of terms of
a given sort and rewrite rules l → r are such that l and r are of the same sort.
Such rewrite theories specify concurrent systems in Maude. They enjoy a specific
lifting lemma, thanks to the fact that the relations →R/E and →R,E coincide in
this context.

Lemma 3. [50] For a topmost theory (F , E,R), let t in T (F ,X ) be a non
variable term and V a set of variables containing Var(t). For some substitution
ρ, let ρ(t) →R/E t′ using the rule l → r in R. Then there are σ, θ, t′′ such that
t �σ

R,E t′′ using the same rule l → r, t′′ is not a variable, ρ =E (θ ◦ σ) on V
and θ(t′′) =E t′.

4.4 Cumulating Constraints

Abstraction constraints have to be combined with the narrowing substitutions
to characterize the set of elements of M schematized in the proof trees. A nar-
rowing step effectively corresponds to a rewriting step of instantiations of u if
the narrowing substitution σ is compatible with the abstraction constraints as-
sociated to u. Otherwise, the narrowing step is meaningless. So the narrowing
constraint attached to the narrowing step is added to abstraction constraints, to
get an abstraction constraint formula (ACF for short).

In the case of termination under strategies, the ACF may be a complex
formula of the form

∧
i(ti⇓ = t′i) ∧

∧
j(xj = tj) ∧

∧
k

∨
lk

(ulk �= vlk), where
ti, t

′
i, tj , ulk , vlk ∈ T (F ,X ∪XA), xj ∈ X ∪XA. For specific definitions of an ACF

and its solutions, see [27,20,26].
An ACF A is attached to each term u in the proof trees; its solutions charac-

terize the interesting instantiations of u, i.e. the θu such that θ is a solution of A.
When A has no solution, the current node of the proof tree represents no element
ofM. Such nodes are then useless for the proof. Detecting and suppressing them
when applying a narrowing step allows controlling the narrowing mechanism. So
we have the choice between generating only the useful nodes of the proof tree,
by testing the satisfiability of A at each step, or stopping the proof on a branch
on an useless node, by testing the unsatisfiability of A. These are both facets of
the same question, but in practice, they are handled in different ways. Checking
the satisfiability of A is in general undecidable, but sufficient conditions can be
given, relying on a characterization of P -canonical forms. The unsatisfiability of
A is also undecidable in general, but simple automatable sufficient conditions can
be used, very often applicable in practice. They rely on reducibility, unifiability,
narrowing and constructor tests [27].

4.5 Relaxing the Induction Hypothesis

It is important to point out the flexibility of the proof method that allows the
combination with auxiliary proofs of P using different techniques: when the
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induction hypothesis cannot be applied on a term u, i.e. when it is not possible
to decide whether the ordering constraints are satisfiable, it may be possible to
prove P for any instantiation of u (which is denoted by P (〈u〉)) by another way.

When termination properties are addressed, the notion of usable rules [1],
adapted to the case of strategies [27,19,17], can be very useful to prove P .

Moreover, P (〈u〉) is true when, in particular, every instantiation of u is a P -
canonical form. For termination, this is the case when u is not narrowable, and
all variables of u are abstraction variables in XA. Indeed, by Definition 4 and
Lemma 1 for weak innermost or S-termination of rewriting, every instantiation of
u is a P -canonical form. This includes the cases where u itself is an abstraction
variable, and where u is a non narrowable ground term. P is also true on a
narrowable u whose variables are all in XA, and whose narrowing substitutions
are not compatible with A. As said in Section 4.4, these narrowing possibilities
do not represent any reduction step for the instantiations of u, which are then
P -canonical forms. For C-reducibility, terms of T (C,XA) are P -canonical forms.

5 The Proof Procedure

5.1 Inference Rules

We are now ready to describe the different steps of the proof mechanism pre-
sented in Section 3.

The proof steps generate proof trees in transforming 3-tuples (T, A, C) where

– T is either a singleton containing the current term u of T (F ,X ∪XA) or the
empty set,

– A is a conjunction of abstraction constraints. At each abstraction step, con-
straints of the form u⇓ = X, u ∈ T (F ,X ∪ XA), X ∈ XA are added to A
for each subterm u abstracted into a new abstraction variable X . At each
narrowing step with narrowing substitution σ, σ is added to A,

– C is a conjunction of ordering constraints stated by the abstraction steps.

Starting from initial nodes (T = {f(x1, . . . , xm)}, A = #, C = #), with f ∈ F ,
the proof process consists in applying the inference rules described in Table 1.

In these rules, the satisfiability of A is checked before each narrowing step only.
For the abstraction and stop steps, arguments on variables and the application
order of the rules allow deducing that the satisfiability of A is preserved. For
details and variants on the conditions of the inference rules, especially with
unsatisfiability test of A, see [27].

5.2 How to Combine the Inference Rules

The previous inference rules, applied to every pattern p = f(x1, . . . , xm), where
x1, . . . , xm ∈ X and f ∈ F , are combined with the following control:

Strat−Rules = repeat∗(try(abstract), try−dk(narrow), try(stop)).
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Table 1. Inference rules applied on the pattern p = f(x1, . . . , xm)

Abstract: {t}, A, C

{u}, A ∧
�

j∈{i1,...,ip}

t|j⇓ = Xj , C ∧
�

j∈{i1,...,ip}

HC(t|j)

where t is abstracted into u at positions i1, . . . , ip �= ε

if C ∧ HC(t|i1) . . . ∧ HC(|tip) is satisfiable

Narrow: {t}, A, C
{u}, A ∧ σ, C

if t �σ u and A ∧ σ is satisfiable

Stop: {t}, A, C
∅, A ∧ HA(t), C ∧ HC(t)

if (C ∧ HC(t)) is satisfiable.

and HA(t) =

�

 if all instantiations of t are P−canonical forms
t⇓ = X otherwise.

HC(t) =

�

 if P (〈t〉)
p > t otherwise.

The control strategy ”repeat∗(T1, . . . , Tn)” repeats the control strategies of
the list (T1, . . . , Tn) until it is not possible anymore. The operator ”try” is a
generic operator that can be instantiated, following the given reduction relation,
by try−skip(T ), expressing that the strategy or rule T is tried and skipped when
it cannot be applied, or by try−stop(T ), stopping the strategy if T cannot be
applied. The operator “try−dk′′ is defined like ”try”, but the strategy T has to
be applied in all possible ways (which generates branching nodes in the proof
trees). This is required to generate all narrowing steps simulating the relevant
reductions.

5.3 The General Theorem

Let us assume that the rule Narrow is applied with a narrowing relation such
that (T (F ,X ∪XA), �) is a simulation of (M,→). We write SUCCESS (f , �,�)
if the application of Strat−Rules on ({f(x1, . . . , xm)},#,#), gives a finite proof
tree, whose sets C of ordering constraints are satisfied by a same ordering �,
and whose leaves are nodes of the form (∅, A, C).

The following theorem is stated provided an emptiness lemma, an abstraction
lemma, a narrowing lemma and a stopping lemma hold (see below). These lem-
mas depend on the proposition P , on the set M and on the relations → and �,
and are established for each case.

Theorem 1. Let (M,→) be an abstract reduction system, where M is an F-
algebra, P be a proposition to be proved on (M,→), and (T (F ,X ∪ XA), �) a
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P -simulation of (M,→). Let I be the subset of constants of F such that the
elements of 〈I〉 are irreducible for →. I is assumed to be non-empty. If
– there is a noetherian ordering � such that for each f ∈ F \ I, we have

SUCCESS (f , �,�),
– P is true on 〈I〉,

then P is true on M.

Proof. By hypothesis, on 〈I〉, P is true. We may thus restrict our attention to
the elements of M\ 〈I〉, simulated by the patterns f(x1, ..., xn).

Let us prove that θf(x1, . . . , xm) satisfies P for any θ satisfying A = # if we
have SUCCESS (f , �,�) for every defined symbol f ∈ F \ I.

To each node N of the proof tree of f , characterized by a current term t and
the set of constraints A, we associate the set of elements G = {αt | α satisfies A},
that is the set of elements of M represented by N .

Inference rule Abstract (resp. Narrow) transforms ({t}, A) into ({t′}, A′)
to which is associated G′ = {βt′ | β satisfies A′} (resp. into ({t′i}, A′

i), i ∈ [1..l]
to which are associated G′ = {βit

′
i | βi satisfies A′

i}).
By Abstraction (resp. narrowing)Lemma, applyingAbstract (resp.Narrow),

for each αt in G, there is a βt′ (resp. βit
′
i) in G′ and such that P is true for βt′ (resp.

for the βit
′
i) implies P is true for αt.

When the inference rule Stop applies on ({t}, A, C), A is satisfiable, and then,
by Stopping Lemma, every element of G = {αt | α satisfies A} satisfies P .

Therefore, the proposition P is true for all terms in all sets G.
As the process is initialized with {f(x1, . . . , xm)} and a constraint problem

satisfiable by any instantiation, we get that θf(x1, . . . , xm) satisfies P , for any
f(x1, . . . , xm) and any instantiation θ. �
The following lemmas are necessary for the proof of Theorem 1 and have to be
proved for each instance of P and →.

Lemma 4 (Abstraction Lemma). Let ({t}, A, C) be a node of any proof tree,
giving the node ({t′ = t[Xj]j∈{i1,...,ip}}, A′, C′) by application of Abstract.

For any instantiation α satisfying A, if αt is reducible, there is β such that P
is true for βt′ implies P is true on αt. Moreover, β satisfies A′.

The narrowing lemma has two versions, according to the strong (resp. weak)
character of the proposition P to be proved.

Lemma 5 (Narrowing Lemma). Let the narrowing relation used in Narrow
be such that (T (F ,X ∪XA), �) is a P -simulation of (M,→). Let ({t}, A, C) be
a node of any proof tree, giving the nodes ({vi}, A′

i, C
′
i), i ∈ [1..l], by application

of Narrow.
For any instantiation α satisfying A, if αt is reducible, then, for each i ∈ [1..l],

there exist βi such that P is true for all (resp. one of) the βivi, i ∈ [1..l], implies
P is true for αt. Moreover, βi satisfies A′

i for each i ∈ [1..l].

Lemma 6 (Stopping Lemma). Let ({t}, A, C) be a node of any proof tree
with A satisfiable, and giving the node (∅, A′, C′) by application of an inference
rule. Then for any instantiation α satisfying A, αt satisfies P .
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5.4 An Example

Consider the following rewrite system R, taken from [20], which is not terminat-
ing, nor even, because of the rule (2), innermost terminating.

f(g(x), s(0))→ f(g(x), g(x)) (1)
f(g(x), s(y)) → f(h(x, y), s(0)) (2)

g(s(x)) → s(g(x)) (3)
g(0)→ 0 (4)

h(x, y)→ g(x). (5)

Let us prove weak innermost termination of R on T (F), with F = {f : 2, h :
2, g : 1, s : 1, 0 : 0}. Since the defined symbols of R are f , g, and h, we have to
apply the inference rules to f(x1, x2), g(x1) and h(x1, x2). The proof trees, given
in Figure 1 show how the inference rules are applied. When Narrow applies, we
specify the narrowing substitution, and in parentheses, the rewrite rule number
used to narrow.

For weak propositions, when narrowing produces several steps simulating re-
duction steps for the same set of ground instances, we develop all branches in
parallel to increase the chances to get success, i.e. to get branches ending with
an application of Stop. As soon as one is successful, the other ones are cut.

On the example, the subtree marked by
⊙

in the proof tree of f is cut as soon
as the subtree generated on the left from f(X6, s(0)) with the same substitution
(up to a renaming) σ = (X6 = g(X7)) ∧ (X7 �= s(X8) ∧ X7 �= 0) is successful.
The final proof trees are bold.

6 Finding P -Canonical Forms for Weak Properties

When P is a weak proposition, computing a P -canonical form with the reduction
relation→ in general requires to develop the reduction trees with a breadth-first
strategy to capture the branch leading to the good elements. But such a strategy
is often very costly, and it is much better to have hints about the good derivations
to compute them directly with a depth-first mechanism.

Our proof process, as it simulates the reduction mechanism, gives complete
information on the interesting reduction branches. It allows extracting the exact
application of reduction that yields an interesting form, like a normal form or
a constructor form. The breadth-first strategy is used once, for generating the
proof trees. Then, to reduce an element, it is enough to follow the reduction
scheme simulated by abstraction and narrowing in the proof trees.

When M is T (F) and → a rewriting relation, a P -canonical form for any
element of M is computed with a reduction strategy ST that is built according
to the proof trees establishing the proposition P .

Definition 8. Let P be a proposition on (T (F),→) proved using Theorem 1.
The strategy tree STf associated to f ∈ F is the proof tree obtained from the
initial node ({f(x1, . . . , xm)},#,#).
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g(x1)

Abstract

��
g(X1)

Narrow,(3)

σ=(X1=s(X2))

���������������

Narrow,(4)

σ=(X1=0)

���������������

s(g(X2))

Stop

��

0

Stop

��
∅ ∅

h(x1,x2)

Abstract

��
h(X1,X2)

Narrow,(5)σ=Id

��
g(X1)

Stop

��
∅

f(x1, x2)

Abstract

��
f(X1, X2)

Narrow,(2)
σ = (X1 = g(X3) ∧ X2 = s(X4))

∧(X3 �= s(X5) ∧ X3 �= 0) ��
f(h(X3,X4), s(0))

Abstract

��
f(X6, s(0))

Narrow,(1)

σ = (X6 = g(X7))
∧(X7 �= s(X8) ∧ X7 �= 0)

�����������������

Narrow,(2) ����������������

f(g(X7),g(X7))

Abstract

��

� �� f(h(X9, 0), s(0))

Abstract

��
f(X11,X12)

Narrow,(2)
σ = (X11 = g(X14) ∧ X12 = s(X15))

∧(X14 �= s(X16) ∧ X14 �= 0)��

f(X13, s(0))

Narrow,(1)

�����������������������

Narrow,(2)

��

f(h(X14,X15), s(0))

Stop

��
∅ f(g(X17), g(X17)) f(h(X19, 0), s(0))

Fig. 1. Example. Proof trees for symbols g, h and f .

The computation of a P -canonical form of any element of T (F) follows the
strategy trees.

Definition 9. Let P be a proposition on (T (F),→) proved using Theorem 1.
Let ST = {STf | f ∈ F} be the set of strategy trees, and s = f(t1, . . . , tn) be an
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element of T (F). Computing a P -canonical form canST (s) with respect to ST
is done in the following way:

– if f ∈ I, then canST (s) = canST (f) = f ,
– else canST (s) is recursively computed as follows: let t be the current term

in the recursive definition and u the corresponding term in STf such that
θ(u) = t for some instantiation θ. Then canST (t) = canST (t′), where
• if the step applied on u is Abstract, at positions i1, . . . , ip,

then t′ = t[t′1]i1 . . . [t′p]ip , and t′j =
{

t|ij⇓ if P (〈u|ij 〉)
canST (t|ij ) otherwise,

• if the step is Narrow with u �p,l→r,σ u′,
then t′ = μu′, for some μ such that θ = μσ on V ar(u) ∪ Dom(θ),

• if the step is Stop, then t′ =
{

t⇓ if P (〈u〉)
canST (t) otherwise.

The previous definition assumes that if the proposition P has been proved on a
particular element t during the proof, one is able to build a strategy to compute
a P -canonical form of t. In the case of weak termination proof for instance, a
simple sufficient condition is that t is proved strongly terminating, which can be
established in most cases with the usable rules of t. Under this assumption, the
following theorem has been proved in [20] for the weak innermost termination,
and in [26] for existence of constructor forms.

Theorem 2. Let P be a proposition on (T (F),→) proved with Theorem 1. Let
ST = {STf | f ∈ F} be the set of strategy trees.Then for every element t ∈ T (F),
canST (t) is a P -canonical form for →.

In [20] it is shown how, in the previous weak innermost termination example,
Definition 9 is used to build a strategy for computing a weak normal form for
any ground term.

7 Applicability of our Inductive Approach

As witnessed by the spectrum of properties it can prove, our inductive proof
method is well-suited to handle properties of reduction relations, and in partic-
ular of rewriting relations. In return, the used ingredients are in general delicate
to handle: satisfiability of term ordering constraints is undecidable, as well as
satisfiability of abstraction constraints. Moreover the narrowing process easily
diverges.

However, in the context where these notions are used, we can deal with
them in a reasonable efficient way. Cariboo [18,21], an implementation of our
method for termination under the innermost, outermost and local strategies, al-
lowed us to observe how these notions behave in an operational and practical
way.
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Ordering Constraints. Satisfiability of term ordering constraints can be han-
dled with sufficient conditions based on existing orderings. For instance,
testing simple orderings as the subterm ordering or a lexicographic path or-
dering is sufficient for more than 80% of the innermost examples treated by
Cariboo (most than 200 tested), thanks to the power of induction, and to the
help of usable rules. For the other ones, a constraint solver providing polyno-
mial interpretations gives a solution. The failure cases are due to generated
ordering constraints whose resolution requires to compare abstraction vari-
ables with standard variables, or which cannot be satisfied by simplification
orderings, because of constraints incompatible with term embedding. In the
first case, additional knowledge on normal forms can solve the problem. For
the second case, other orderings must be tried.

For C-reducibility, ordering constraints are easier to solve. Indeed, it can
be assumed that the constructor terms are minimal for the induction order-
ing, which allows us to compare abstraction variables with standard vari-
ables, and avoids the first above failure case.

Abstraction Constraints. As said before, simple and easily implementable
sufficient conditions exist for proving unsatisfiability of A. Meaningless nodes
in proof trees are then automatically detected and the process stops with
success on the current branch.

Sufficient conditions for satisfiability can also be given, relying on a char-
acterization of P -canonical forms. An obvious solution for an abstraction
constraint of the form t⇓ = X is t itself if t is a P -canonical form.

Narrowing. Narrowing substitutions, in the same way as abstraction
constraints, restrict the considered sets of instantiations in the nodes of
the proof trees. As the abstraction formula A, collecting both kinds of re-
strictions, is proved to be (un)satisfiable at each step of the proofs, useless
narrowing steps are detected and discarded.

Moreover, for weak properties, as said before, redundant branches gen-
erated by narrowing i.e. branches representing the same sets of ground in-
stances can be detected and cut.

8 Related Work

Several properties considered in our approach are also provable with other meth-
ods. A number of works address the termination property for the innermost,
context sensitive and lazy rewriting strategies. Sufficient completeness has also
been investigated for conditional and typed specifications, in the confluent (every
derivation chain from a given element leads to the same form) and terminating
case. Let us see more in detail how these works relate to our approach.

Innermost Termination. The termination proof for the innermost strategy
has also be tackled with the dependency pair method, designed from 1996
by T. Arts and J. Giesl for universal termination of rewriting [1,24,23]. The
comparison between this method and our approach is not easy to do. In-
deed, several basic ingredients are shared: narrowing, ordering constraints,
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usable rules are present in both contexts. But while the dependency pairs
method is initially based on an analysis of the rules syntax to detect for-
ward closures, our approach was guided by the idea to schematize derivation
trees, which allows us to abstract the reduction relation. Except for the in-
nermost case, handling specific rewriting strategies seems more difficult with
the dependency pair approach.

Simulation by narrowing has been used as the basis of our method, since
1999 [28], to schematize rewriting steps of terms, following their possible
ground instances. In the dependency pair approach instead [1], narrowing has
been introduced to provide a sufficient condition to detect the dependencies
between pairs.

Usable rules have been introduced in the dependency pair approach [1]
for innermost termination. We then have adapted the notion to local strate-
gies [17], and to the outermost strategy [19], to enrich our inductive proof
principle.

Let us mention another work establishing that orderings suitable for prov-
ing innermost termination have to be at least monotonic after each maximal
parallel innermost rewriting step [16]. A similar structural requirement is ex-
pressed on the induction ordering needed for our inductive approach, through
constraints f(x1, ..., xn) > xi for function symbols f in patterns.

Termination under Local Strategies. Many results have recently be given
for termination of the context-sensitive rewriting [45,22,48], which involves
particular kinds of local strategies [46,47].

Local strategies, giving ordered lists of positions to be rewritten in a term,
are more specific than context sensitive strategies, where the order of reduced
positions is not specified. They can enable termination while the context
sensitive strategy diverges [17].

Outermost Termination. Outermost computations are of interest in particu-
lar for functional languages, where interpreters or compilers generally involve
a strategy for call by name. Often, lazy evaluation is used instead: operators
are labeled in terms as lazy or eager, and the strategy consists of reducing the
eager subterms only when their reduction allows a reduction step higher in
the term [53]. Termination of lazy evaluation has been studied for functional
languages (see for example [55] and [25] for Haskell).

A double motivation for studying the outermost computation is that it is
simpler to implement and that lazy evaluation may diverge while the out-
ermost computation terminates [19]. Up to our knowledge, there is still no
other termination proof method for specifically proving outermost termina-
tion of rewriting.

Weak Termination. The weak termination property has been studied from
several perspectives. For instance, B. Gramlich proved that weak termina-
tion can imply strong termination [31,32] under some syntactic restrictions.
He also established conditions on rewrite systems for the property to be pre-
served by the union operation [33]. J. Goubault-Larrecq proposed a proof
of weak termination of typed Lambda-Sigma calculi in [30]. Beyond these
works and our’s, we are not aware of other techniques for establishing weak
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termination of rewriting. Our method even proves weak termination of sys-
tems that are not innermost strongly terminating.

C-reducibility. Sufficient completeness has already been widely studied, for
example in [35,54,41,37,12,36,44,6,5,34,7], but most of the time, the pro-
posed approaches for proving the property need restrictions like termination
and confluence. Under the last two assumptions, sufficient completeness can
also be tackled through ground reducibility (expressing that every ground
instance of a term is reducible) [56,38,36,42,8,13], provided the normal form
of a constructor term is again a constructor term [36].

Our approach for proving C-reducibility goes beyond the previous usual
restrictions, proposing for the first time a technique for proving the reach-
ability of constructor forms for programs or rewrite systems that can be
neither confluent, nor terminating. No restriction on the domain is required,
such as the constructor preserving property, or the absence of relation be-
tween constructors. Although our method differs from previous approaches,
we naturally encounter basic notions already used for proving sufficient com-
pleteness, as unification, used in [44], or covering properties used in many
works in the domain, for example in [41,44]. In [5], pattern trees are also
developed, but under the assumption that the rewrite system is terminating
and ground confluent.

9 Conclusion

In this paper, we have presented an inductive proof method for properties of
reduction relations on an abstract reduction system (M,→) where M is an
F -algebra. Let us summarize its main characteristics.

We handle proofs of a proposition P stating a property by observing the
possible derivation trees of the relation →, schematizing them with a narrowing
relation on terms. Several examples have been given where M is T (F) and
→ various rewrite relations. Other applications are suggested and need further
study.

Induction with a noetherian ordering onM is used to modelize subderivations
leading to a P -canonical form, and to stop derivations as soon as P can be sup-
posed true by induction. The inference process is expressed with three inference
steps: an abstraction and a stop step, expressing respectively the above induction
mechanisms, and a narrowing step, simulating the reductions on a given term.
Constraints are heavily used on one hand to gather conditions that the induction
ordering must satisfy, on the other hand to represent the set of instantiations of
terms. The power of deduction with constraints [39] is once more illustrated in
this proof process.

Despite the proof method is strongly based on derivation trees, the induction
relation is not the reduction relation, which is then not required to be termi-
nating. Our approach for proving the property of reduction to a constructor
form [26] nicely illustrates this fact.

An interesting aspect of this technique is that it allows, for weak proper-
ties, the identification of interesting branches leading to P -canonical forms, like
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normal forms or constructor forms. Their computation is guided by the proof
trees of the weak property. How this can be exploited for certifying compilers of
rewrite programs needs to be further explored.
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Abstract. The notion of computability closure has been introduced for
proving the termination of higher-order rewriting with first-order match-
ing by Jean-Pierre Jouannaud and Mitsuhiro Okada in a 1997 draft which
later served as a basis for the author’s PhD. In this paper, we show how
this notion can also be used for dealing with β-normalized rewriting with
matching modulo βη (on patterns à la Miller), rewriting with matching
modulo some equational theory, and higher-order data types (types with
constructors having functional recursive arguments). Finally, we show
how the computability closure can easily be turned into a reduction or-
dering which, in the higher-order case, contains Jean-Pierre Jouannaud
and Albert Rubio’s higher-order recursive path ordering and, in the first-
order case, is equal to the usual first-order recursive path ordering.

1 Introduction

After Jan Willem Klop’s PhD thesis on Combinatory Reduction Systems (CRS)
[28,29], the interest in higher-order rewriting, or the combination of λ-calculus
and rewriting, was relaunched by Dale Miller and Gopalan Nadathur’s work on
λ-Prolog [38] and Val Breazu-Tannen’s paper on the modularity of confluence
for the combination of simply-typed λ-calculus and first-order rewriting [10,13].
A year later, Dale Miller proved the decidability of unification modulo βη for
“higher-order patterns” [36,37], and the modularity of termination for simply-
typed λ-calculus and first-order rewriting was independently proved by Jean
Gallier and Val Breazu-Tannen [11,12] and Mitsuhiro Okada [40], both using
Jean-Yves Girard’s technique of reducibility predicates [18,19,20]. A little bit
later, Daniel Dougherty showed, by purely syntactic means (without using re-
ducibility predicates), that these results could be extended to any “stable” set
of untyped λ-terms [16,17], the set of simply-typed λ-terms being stable. We
must also mention Zhurab Khasidashvili’s new approach to higher-order rewrit-
ing with his Expression Reduction Systems (ERS) [27].

Then, in 1991, two important papers were published on this subject, both
introducing a new approach to higher-order rewriting: Tobias Nipkow’s Higher-
order Rewrite Systems (HRS) [39,33], and Jean-Pierre Jouannaud and Mitsuhiro
Okada’s Executable Higher-Order Algebraic Specification Languages [22,23].
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Tobias Nipkow’s approach is based on Dale Miller’s result: the simply-typed
λ-calculus, which is confluent and terminating, is used as a framework for en-
coding higher-order rewriting. He extends to this framework the Critical Pair
Lemma. Jean-Pierre Jouannaud and Mitsuhiro Okada’s approach can be seen as
a typed version of CRS’s (restricted to first-order matching). They proved that
termination is modular for the combination of simply-typed λ-calculus, a non-
duplicating1 terminating first-order rewrite system, and an higher-order rewrite
system which definition follows a “general schema” extending primitive recursion.
Later, Vincent van Oostrom and Femke van Raamsdonk compared CRS’s and
HRS’s [46] and developed an axiomatized framework subsuming them [47,49].

The combination of β-reduction and rewriting is naturally used in depen-
dent type systems and proof assistants implementing the proposition-as-type
and proof-as-object paradigm [6]. In these systems, two propositions equivalent
modulo β-reduction and rewriting are considered as equivalent (e.g. P (2+2) and
P (4)). This is essential for enabling users to formalize large proofs with many
computations, as recently shown by Georges Gonthier and Benjamin Werner’s
proof of the Four Color Theorem in the Coq proof assistant. However, checking
the correctness of user proofs requires to check the equivalence of two terms.
Hence, the necessity to have termination criteria for the combination of β-
reduction and a set R of higher-order rewrite rules.

For proving the correctness of the general schema, Jean-Pierre Jouannaud and
Mitsuhiro Okada used Jean-Yves Girard’s technique of reducibility predicates.
Roughly speaking, since proving the (strong) β-normalization by induction on
the structure of terms does not work directly, one needs to prove a stronger predi-
cate. In 1967, William Tait introduced a “convertibility predicate” for proving the
weak normalization of some extension of Kurt Gödel’s system T [43]. Later, in
1971, Jean-Yves Girard introduced “reducibility predicates” (called computability
predicates in the following) for proving the weak and strong normalization of the
polymorphic λ-calculus [18,19]. This technique can be applied to (higher-order)
rewriting by proving that every function symbol is computable, that is, that
every function call is computable whenever its arguments so are.

This naturally leads to the following question: which operations preserve
computability? Indeed, from a set of such operations, one can define the com-
putability closure of a term t, written CC(t), as the set of terms that are com-
putable whenever t so is. Then, to get normalization, it suffices to check that,
for every rule f l → r ∈ R, r belongs to the computability closure of l. Ex-
amples of computability-preserving operations are: application, function calls
on arguments smaller than l in some well-founded ordering >, etc. Jean-Pierre
Jouannaud and Mitsuhiro Okada introduced this notion in a 1997 draft which
served as a basis for [8,9]. In this paper, we show how this notion can be extended
for dealing with β-normalized rewriting with matching modulo βη on patterns
à la Miller and matching modulo some equational theory.

Another way to prove the termination of R is to find a decidable well-founded
rewrite relation containing R. A well known such relation in the first-order case

1 l → r is non-duplicating if no variable has more occurrences in r than it has in l.
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is the recursive path ordering [41,14] which well-foundedness was initially based
on Kruskal theorem [30]. The first attempts made for generalizing this ordering
to the higher-order case were not able to orient system T [31,32,26]. Finally,
in 1999, Jean-Pierre Jouannaud and Albert Rubio succeeded in finding such an
ordering [25] by using computability-based techniques again, hence providing the
first well-foundedness proof of RPO not based on Kruskal theorem. This ordering
was later extended to the calculus of constructions by Daria Walukiewicz [50,51].

Although the computability closure on one hand, and the recursive path or-
dering on the other hand, share the same computability-based techniques, there
has been no precise comparison between these two termination criteria. In [51],
one can find examples of rules that are accepted by one criterion but not the
other. And Jean-Pierre Jouannaud and Albert Rubio themselves use the notion
of computability closure for strengthening HORPO.

In this paper, we explore the relations between both criteria. We start from the
trivial remark that the computability closure itself provides us with an ordering:
let t CR(>) u if t = ft and u ∈ CC>(t), where CC> is the computability closure
built by using a well-founded relation > for comparing the arguments between
function calls. Proving the well-foundedness of this ordering simply consists in
proving that the computability closure is correct, which can be done by induction
on >. Then, we remark that the function mapping > to CR(>) is monotone wrt
inclusion. Thus, it admits a least fixpoint which is a well-founded ordering. We
prove that this fixpoint contains HORPO and is equal to RPO in the first-order
case.

2 Terms and Types

We consider simply-typed λ-terms with curried constants. See [2] for details
about typed λ-calculus. For rewriting, we follow the notations of Nachum Der-
showitz and Jean-Pierre Jouannaud’s survey [15].

Let B be a set of base types. The set T of simple types is inductively defined
as usual: T ∈ T = B ∈ B | T ⇒ T .

Let X be a set of variables and F be a set of function symbols disjoint from
X . We assume that every a ∈ X ∪ F is equipped with a type τa ∈ T. The sets
T T of terms of type T are inductively defined as follows:
– If a ∈ X ∪ F , then a ∈ T τa .
– If x ∈ X and t ∈ T U , then λxt ∈ T τx⇒U .
– If v ∈ T T⇒U and t ∈ T T , then vt ∈ T U .

As usual, we assume that, for all type T , the set of variables of type T is infi-
nite and consider terms up to α-conversion (type-preserving renaming of bound
variables). Let FV(t) be the set of variables free in t. Let t denote a sequence of
terms t1, . . . , tn of length n = |t| ≥ 0.

Let τ(t) denote the type of a term t. In the following, writing t : T or tT

means that τ(t) = T .
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The set Pos(t) of positions in a term t is defined as usual as words on {1, 2}.
Let t|p be the subterm of t at position p ∈ Pos(t), and t[u]p be the term obtained
by replacing in t its subterm at position p ∈ Pos(t) by u.

A term is algebraic if it contains no abstraction and no subterm of the form
xt. A term t is linear if no variable free in t occurs more than once in t.

The β-reduction is the closure by context of the relation (λxt)u →β tux where
tux denotes the higher-order substitution of x by u in t.

A rewrite rule is a pair of terms l → r such that l is of the form f l, FV(r) ⊆
FV(l) and τ(l) = τ(r). Given a set R of rewrite rules, let →R be the closure
by context and substitution of R. Hence, matching is modulo α-conversion (but
α-conversion is needed only for left-hand sides having abstractions). A rule l → r
is linear (resp. algebraic) if both l and r are linear (resp. algebraic).

Given a relation → on terms, let ←, →= and →∗ be its inverse, its reflexive
closure and its reflexive and transitive closure respectively. Let also→ (t) = {t′ ∈
T | t → t′} be the set of reducts of t, and SN(→) (resp. SNT (→)) be the set of
terms (resp. of type T ) that are strongly normalizable wrt→. Our aim is to prove
the termination (strong normalization, well-foundedness) of → = →β ∪→R.

Given a relation >, let >lex, >mul and >prod respectively denote the lexico-
graphic, multiset and product extensions of >. Note that all these extensions
are well-founded whenever > is well-founded.

3 Computability

In this section, we remind the notion of computability predicate introduced by
William Tait [43,44] and extended by Jean-Yves Girard with the notion of neu-
tral2 term [19,20]. Every type is interpreted by a set of computable terms of that
type. Since computability is defined so as to imply strong normalization, the
latter is obtained by proving that every term is computable.

In the following, we assume given a set R of rewrite rules.

Definition 1 (Reducibility candidates). A term is neutral if it is of the
form xv or of the form (λxt)uv. Let → = →β ∪→R. A reducibility candidate
for the type T is a set P of terms such that:

(1) P ⊆ SNT (→).
(2) P is stable by →: →(P ) ⊆ P .
(3) If t : T is neutral and →(t) ⊆ P , then t ∈ P .

Let QT
R be the set of all reducibility candidates for the type T , and IR be the

set of functions I from B to 2T such that, for all B ∈ B, I(B) ∈ QB
R. Given an

interpretation of base types I ∈ IR, we define an interpretation [[T ]]IR ∈ QT
R for

every type T as follows:

– [[B]]IR = I(B),
– [[T ⇒ U ]]IR = {v ∈ SNT⇒U | ∀t ∈ [[T ]]IR, vt ∈ [[U ]]IR}.
2 simple in [19].
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One can check that SNT is a reducibility candidate for T .
We now check that the interpretation of a type is a reducibility candidate.

Lemma 1. If I ∈ IR then, for all type T , [[T ]]IR ∈ QT
R.

Proof. We proceed by induction on T . The lemma is immediate for T ∈ B.
Assume now that [[T ]]IR ∈ QT

R and [[U ]]IR ∈ QU
R. We prove that [[T ⇒ U ]]IR ∈

QT⇒U
R .

(1) [[T ⇒ U ]]IR ⊆ SNT⇒U by definition.
(2) Let v ∈ [[T ⇒ U ]]IR, v′ ∈ →(v) and t ∈ [[T ]]IR. We must prove that v′t ∈ [[U ]]IR.

This follows from the facts that [[U ]]IR ∈ QU
R, vt ∈ [[U ]]IR and v′t ∈ →(vt).

(3) Let vT⇒U be a neutral term such that →(v) ⊆ [[T ⇒ U ]]IR and t ∈ [[T ]]IR.
We must prove that vt ∈ [[U ]]IR. Since v is neutral, vt is neutral too. Since
[[U ]]IR ∈ QU

R, it suffices to prove that →(vt) ⊆ [[U ]]IR. Since [[T ]]IR ∈ QT
R,

t ∈ SN and we can proceed by induction on t with → as well-founded
ordering. Let w ∈ →(vt). Since v is neutral, either w = v′t with v′ ∈ →(v), or
w = vt′ with t′ ∈ →(t). In the former case, w ∈ [[U ]]IR since v′ ∈ [[T ⇒ U ]]IR.
In the latter case, we conclude by induction hypothesis on t′. ��

Finally, we come to the definition of computability.

Definition 2 (Computability). Let I be the base type interpretation such that
I(B) = SNB. A term t : T is computable if t ∈ [[T ]]IR.

In the following, we drop the superscript I in [[T ]]IR.
We do not know how to prove that computability is stable by subterm before

proving that every term is computable. However, since, on base types, com-
putability is equivalent to strong normalization, the subterms of base type of a
computable term are computable. This is in particular the case for the arguments
of base type of a function symbol:

Definition 3 (Accessibility). For all f : T ⇒ B, let Acc(f) = {i | Ti ∈ B} be
the set of accessible arguments of f .

We now prove some properties of computable terms.

Lemma 2 (Computability properties).
(C1) If t, u and tux are computable, then (λxt)u is computable.
(C2) If every symbol is computable, then every term is computable.
(C3) If ft is computable and i ∈ Acc(f), then ti is computable.
(C4) A term ft : B is computable whenever t are computable and every head-

reduct of ft is computable.
(C5) A symbol f : T ⇒ B is computable if every head-reduct of ft is computable

whenever t : T are computable.
(C6) A symbol f is computable if, for every rule f l → r ∈ R and substitution

σ, rσ is computable whenever lσ are computable.
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Proof. (C1) Since (λxt)u is neutral, it suffices to prove that every reduct is
computable. We proceed by induction on (t, u) with →prod as well-founded
ordering (t and u are computable). Assume that (λxt)u → v. If v = tux,
then t′ is computable by assumption. Otherwise, v = (λxt′)u with t → t′,
or v = (λxt)u′ with u → u′. In both cases, we can conclude by induction
hypothesis.

(C2) First note that the identity substitution is computable since variables are
computable (they are neutral and irreducible). We then prove that, for every
term t and computable substitution θ, tθ is computable, by induction on t.

– Assume that t = f ∈ F . Then, tθ = f is computable by assumption.
– Assume that t = x ∈ X . Then, tθ = xθ is computable by assumption.
– Assume that t = λxu. Then, tθ = λxuθ. Let v : V computable. We must

prove that tθv is computable. By induction hypothesis, uθv
x is computable.

Since uθ and v are computable too, by (C1), tθ is computable.
– Assume that t = uV ⇒T v. Then, tθ = uθvθ. By induction hypothesis, uθ

and vθ are computable. Thus, tθ is computable.

(C3) By definition of the interpretation of base types.
(C4) By definition of the interpretation of base types, it suffices to prove that

every reduct of ft is computable. We prove it by induction on t with →prod

as well-founded ordering (t are computable). Head-reducts are computable
by assumption. For non-head-reducts, this follows by induction hypothesis.

(C5) By definition of the interpretation of arrow types and (C4).
(C6) After (C5), it suffices to prove that every head-reduct of ft is computable

whenever t are computable. Let t′ be a head-reduct of ft. Then, there is
l → r ∈ R and σ such that t = lσ and t′ = rσ. Thus, t′ is computable. ��

4 Computability Closure

After the properties (C2) and (C6), we are left to prove that, for every rule
f l → r ∈ R, rσ is computable whenever lσ are computable. This naturally leads
us to find a set CCf (l) of terms t such that tσ is computable whenever lσ are
computable: the computability closure of l wrt f .

We can include l and close this set with computability-preserving operations
like applying a term to another or taking the accessible argument of a function
call.

We can also include variables distinct from FV(l) and allow abstraction on
them by strengthening the property to prove as follows: for all t ∈ CCf (l), tσ is
computable whenever lσ are computable and σ is computable on FV(t) \FV(l).

Now, to allow function calls, the idea is to introduce a precedence on function
symbols and a well-founded ordering > on function arguments.

So, we assume given a quasi-ordering ≥F on F which strict part >F =
≥F \ ≤F is well-founded. Let )F = ≥F ∩ ≤F be its associated equivalence
relation.
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We also assume that every symbol f is equipped with a status statf ∈
{lex, mul}, such that statf = statg whenever f )F g, defining how the argu-
ments of f must be compared: lexicographically (from left to right, or from right
to left) or by multiset.

Definition 4 (Status relation). The status relation associated to a relation
> is the relation (f, t) >stat (g, u) such that f >F g or f )F g and t >statf

u.

Note that the status relation >stat is well-founded whenever > so is.
We now formalize the notion of computability closure.

Definition 5. A function CC mapping every fT⇒B and lT to a set of terms
CCf (l) is a computability closure if, for all fT⇒B, lT , r ∈ CCf (l) and θ, rθ is
computable whenever lθ are computable and θ is computable on X \ FV(l).

We now check that the computability of symbols, hence the termination of
→β ∪→R by (C2), can be obtained by using a computability closure.

Lemma 3. If CC is a computability closure and, for all rule f l → r ∈ R,
r ∈ CCf (l), then every symbol is computable.

Proof. It follows from (C6) and the fact that FV(r) ⊆ FV(l). ��

We now present a computability closure similar to the one introduced in [8,9]
except that the relation > used for comparing arguments in recursive calls is

(arg) li ∈ CCf
>(l)

(decomp-symb)
gu ∈ CCf

>(l) i ∈ Acc(g)

ui ∈ CCf
>(l)

(prec)
f >F g

g ∈ CCf
>(l)

(call)
f F gU ⇒U uU ∈ CCf

>(l) l >f l
statf

u

gu ∈ CCf
>(l)

(app)
uV ⇒T ∈ CCf

>(l) vV ∈ CCf
>(l)

uv ∈ CCf
>(l)

(var)
x /∈ FV(l)

x ∈ CCf
>(l)

(lam)
u ∈ CCf

>(l) x /∈ FV(l)

λxu ∈ CCf
>(l)

Fig. 1. Higher-order computability closure
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replaced by an abstract family of relations (>l)l∈T . We then prove the correctness
of this abstract computability closure under some condition.

Definition 6 (Closure-compatibility). A relation � is closure-compatible
with a family of relations (>l)l∈T if, for all l and θ, tθ � uθ whenever t >l u,
tθ and uθ are computable, and θ is computable on X \ FV(l).

Note that any relation stable by substitution > is closure-compatible with itself
(the constant family equal to >). This is in particular the case of the restriction of
the subterm ordering > defined by t > u if u is a subterm of t and FV(u) ⊆ FV(t).

Lemma 4. Let > = (>l)l∈T be a family of relations. The function CC> de-
fined in Figure 1 is a computability closure whenever there exists a well-founded
relation on computable terms � that is closure-compatible with >.

Proof. We proceed by induction, first on (f, lθ) with �stat as well-founded or-
dering (H1), and second, by induction on CCf

>(l) (H2).
(arg) liθ is computable by assumption.
(decomp-symb) By (H2), guθ is computable. Thus, after (C3), uiθ is com-

putable.
(prec) By (H1), g is computable.
(call) By (H2), uθ are computable. Since l >fl

statf
u, � is closure-compatible

with >, lθ and uθ are computable, and θ is computable on X \FV(l), we have
lθ �statf

uθ. Therefore, by (H1), guθ is computable.
(app) By (H2), uθ and vθ are computable. Thus, uθvθ is computable.
(var) Since x ∈ X \ FV(l), xθ is computable by assumption.
(lam) Wlog we can assume that x /∈ codom(θ). Thus, (λxu)θ = λxuθ. Let v : τx

computable. After (C1), (λxuθ)v is computable if uθ, v and uθv
x are com-

putable. We have v computable by assumption and uθ and uθv
x computable

by (H2). ��

5 β-Normalized Rewriting with Matching Modulo βη

In this section, we show how the notion of computability closure can be extended
to deal with HRS’s [39]. This extends our previous results on CRS’s and HRS’s
[5]. This computability closure approach seems simpler than the technique of
“neutralization” introduced by Jean-Pierre Jouannaud and Albert Rubio in [24].
However, the comparison between both approaches remains to be done.

In HRS’s, rewrite rules are of base type, rule left-hand sides are patterns à la
Miller [37], and rewriting is defined on terms in β-normal η-long form as follows:
t ⇒R u if there are p ∈ Pos(t), l → r ∈ R and σ in β-normal η-long form such
that t|p = lσ↓β↑η and u = t[rσ↓β↑η]p.

We are going to consider a slightly more general notion of rewriting: β-
normalized rewriting with matching modulo βη, defined as follows: t →R,βη u
if there are p ∈ Pos(t), l → r ∈ R and σ in β-normal form such that t|p is in
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β-normal form, t|p =βη lσ and u = t[rσ]p. Furthermore, we do not assume that
rules are of base type. However, in this case, one can check that, on terms in
β-normal η-long form, ⇒R ⊆ →R,βη→∗

β.
Matching modulo βη is necessary when a rule left-hand side contains abstrac-

tions. Consider for instance the left-hand side l = Dλx(sin(Fx)). With matching
modulo α-conversion only, the term t = Dλx(sin u) matches p only if u is of the
form vx. In particular, Dλx(sin x) does not match p. Yet, if one substitutes F
by λxu in l, then one gets D(λx(sin((λxu)x))) which β-reduces to t.

Take now l = Dλx(Fx). With matching modulo α-conversion only, the term
t = Du matches l only if u is of the form λxv. In particular, (D sin) does not
match l. Yet, if one substitutes F by u in l, then one gets Dλx(ux) which η-
reduces to t since x /∈ FV(u) (by definition of higher-order substitution).

Higher-order patterns are terms in β-normal η-long form which free variables
are applied to terms η-equivalent to distinct bound variables. Hence, if l is a
pattern, t and σ are in β-normal form and lσ =βη t, then lσ →∗

β0
=η t, where→β0

is the restriction of →β to redexes of the form (λxt)x, that is, (λxt)x →β0 t [37].
Now, for proving the termination of →β ∪ →R,βη (hence the termination of

the HRS rewrite relation ⇒R), it suffices to adapt the notion of computability
by replacing→R by →R,βη. One can check that all the proofs of the computabil-
ity properties are still valid except the one for (C6) for which we give a new
proof:

Lemma 5 (C6). A symbol f is computable if, for every rule f l → r ∈ R and
substitution σ, rσ is computable whenever lσ are computable.

Proof. After (C5), for proving that f : T ⇒ B is computable, it suffices to prove
that every head-reduct of ft is computable whenever t : T are computable. Let
t′ be a head-reduct of ft. Then, ft is in β-normal form and there are f l → r ∈ R
and σ such that f lσ ←∗

β0
=η ft and t′ = rσ. To conclude, it suffices to check

that lσ are computable.
To this end, we prove that computability is preserved by η-reduction, η-

expansion and β0-expansion. Let t be a computable term and let u be a term
obtained from t by η-reduction, η-expansion or β0-expansion. We prove that u is
computable when u is of base type. If u is not of base type then, by applying it
to computable terms of appropriate types, we get a term of base type. On base
types, computability is equivalent to strong normalization. Thus, it suffices to
prove that every reduct of u is strongly normalizable. In each case, we proceed
by induction on t with → as well-founded ordering (t is computable).
– β0-expansion: t ←β0 u. If u →β u′ then either u′ = t is computable or,

by confluence of β and since β0 makes no duplication, there is t′ such that
t→β t′ ←∗

β0
u′. Now, if u→R u′ then, since R-redexes are in β-normal form,

the β0-redex is either above the R-redex or at a disjoint position. Thus, there
is u′ such that t →R t′ ←β0 u′. In both cases, we can conclude by induction
hypothesis.

– η-reduction: t→η u. If u →β u′ then, by postponement of η wrt β (→η→β ⊆
→+

β→∗
η), there is t′ such that t →+

β t′ →∗
η u′. Now, if u →R u′ then, since
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R-redexes are in β-normal form, either the η-redex is a β-redex and t →β

u →R t′ = u′, or there is t′ such that t →R t′ →∗
η u′. In both cases, we can

conclude by induction hypothesis.
– η-expansion: t ←η u. If u →β u′ then either u′ = t is computable or, by

confluence of βη, there is t′ such that t →β t′ ←∗
η u′. Now, if u →R u′ then,

since R-redexes are in β-normal form, there is t′ such that t →R t′ ←∗
η u′. In

both cases, we can conclude by induction hypothesis. ��

By property (C2) and Lemma 4, it follows that→ = →β ∪→R,βη is well-founded
if, for all rule f l → r ∈ R, r ∈ CCf

>(l).

(decomp-lam)
λyu ∈ CCf

>(l) y /∈ FV(l)

u ∈ CCf
>(l)

(decomp-app-left)
uy ∈ CCf

>(l) y /∈ FV(l) ∪ FV(u)

u ∈ CCf
>(l)

Fig. 2. Decomposition rules for higher-order patterns

Now, for dealing with patterns à la Miller, we also need to add new decom-
position rules in the computability closure.

Lemma 6. The function CC> defined by the rules of Figure 1 and 2 is a com-
putability closure whenever there exists a well-founded relation on computable
terms that is closure-compatible with >.

Proof. We extend the proof of Lemma 4 with the new decomposition rules.
(decomp-lam) Let θ′ be the restriction of θ to dom(θ)\{y}. Wlog, we can assume

that y /∈ codom(θ). Hence, (λyu)θ′ = λyuθ′. Now, since dom(θ) ⊆ FV(u) \
FV(l), dom(θ′) ⊆ FV(λyu) \ FV(l). Thus, by (H2), λyuθ′ is computable.
Since yθ is computable, (λyuθ′)yθ is computable. Thus, by β-reduction, uθ′yθ

y

is computable too. Finally, since y /∈ dom(θ′) ∪ codom(θ′), uθ′yθ
y = uθ.

(decomp-app-left) Let v : τy computable. Since dom(θ) ⊆ FV(u)\FV(l) and y /∈
FV(l), dom(θv

y) = dom(θ) ∪ {y} ⊆ FV(uy) \ FV(l). Thus, by (H2), (uy)θv
y =

uθv
yv is computable. Since y /∈ FV(u), uθv

y = uθ. Thus, uθ is computable. ��

6 Matching Modulo Some Equational Theory

In this section, we show how the notion of computability closure can be used for
proving the termination of the combination of β-reduction and rewriting with
matching modulo some equational theory E [48,21].
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To this end, we assume that E is a symmetric set of rules, that is, l → r ∈ E
iff r → l in E. By definition of rewrite rules (see Section 2), this implies that, for
all l → r ∈ E, r is of the form gr and FV(l) = FV(r). This includes associativity
and commutativity but excludes collapsing rules like x+0 → x and erasing rules
like x× 0 → 0.

Then, rewriting with matching modulo can be defined as follow: t →R,E u if
there are p ∈ Pos(t), l → r ∈ R and σ such that t|p →∗

E lσ and u = t[rσ]p.
Rewriting with matching modulo E is different from rewriting modulo E

which is →∗
E→R. The point is that, with matching modulo E, no E-step takes

place above t|p when one rewrites a term t at some position p ∈ Pos(t).
Hence, we correct an error in [4] (Theorem 6) where it is claimed that →β ∪

→∗
E→R is terminating. What is in fact proved in [4] is the termination of →β ∪

→∗
E1
→R1∪→Rω ,Eω where E1 and R1 (resp. Eω and Rω) are the first-order (resp.

higher-order) parts of E and R respectively.
For proving the termination of →β ∪→R,E , it suffices to adapt computability

by replacing →R by →R,E . One can check that all the proofs of computability
properties are still valid except the one for (C6) for which we give a new proof:

Lemma 7 (C6). Let E be a symmetric set of rules. Assume that � is a well-
founded relation on computable terms closure-compatible with > and that, for
all rule f l → gr ∈ E, r ∈ CCf

>(l). Then, f is computable if, for every rule
f l → r ∈ R and substitution σ, rσ is computable whenever lσ are computable.

Proof. By Lemma 4, CC> is a computability closure. After (C5), for proving
that f : T ⇒ B is computable, it suffices to prove that every head-reduct of ft is
computable whenever t : T are computable. Let t′ be a head-reduct of ft. Then,
there is gl → r ∈ R and σ such that ft →∗

E glσ and t′ = rσ. By definition of
computability closure, lσ are computable since t are computable (induction on
the number of E-steps). Therefore, rσ is computable. ��

By property (C2) and Lemma 4, it follows that → = →β ∪→R,E is well-
founded if moreover, for all rule f l → r ∈ R, r ∈ CCf

>(l).

7 Higher-Order Data Types

Until now, we used the subterm ordering in (call). But this ordering is not strong
enough to handle recursive definitions on higher-order data types, i.e. data types
with constructors having functional recursive arguments. Consider for instance
a type P representing processes with a sequence operator ; : P ⇒ P ⇒ P and
a data-dependent choice operator Σ : (D ⇒ P) ⇒ P. Then, in the following
simplification rule [45]:

(ΣP ); x→ Σλy(Py; x)

the term Py is not a subterm of ΣP .
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In this section, we describe an extension of the computability closure to handle
such definitions. It is based on the interpretation of “positive” higher-order data
types introduced by Nax Paul Mendler in 1987 [34,35].

As usual, the set Pos(T ) of positions in a type T is defined as words on {1, 2}.
The sets Pos+(T ) and Pos−(T ) of positive and negative positions respectively
are inductively defined as follows:
– Posδ(B) = {ε}.
– Posδ(T ⇒ U) = 1 · Pos−δ(T ) ∪ 2 · Posδ(U).

Let Pos(B, T ) be the positions of the occurrences of B in T . A base type B
occurs only positively (resp. negatively) in a type T if Pos(B, T ) ⊆ Pos+(T ) (resp.
Pos(B, T ) ⊆ Pos−(T )).

Nax Paul Mendler showed that the combination of β-reduction and reduction
rules for a “case” or “match” construction does not terminate if a data type B has
a constructor having an argument in the type of which B occurs negatively (we
say that B is not positive). Take for instance c : (B ⇒ N)⇒ B, f : B ⇒ (B ⇒ N)
together with the rule f(cx) →R x. Then, by taking ω = λxfxx : B ⇒ N, we
have ω(cω)→β f(cω)(cω)→R ω(cω)→β . . .

He also showed that the set of all reducibility candidates is a complete lattice
for inclusion and that, if B is positive, then one can build an interpretation of
B as the fixpoint of a monotone functional on reducibility candidates, in which
the reduction rules for the case construction are safe. In this case, we can say
that every argument of a constructor is accessible. We extend this notion of
accessibility to every (defined or undefined) function symbol as follows.

Definition 7 (Accessible arguments). For every fT⇒B ∈ F , let Acc(f) =
{i ≤ |T | | Pos(B, Ti) ⊆ Pos+(Ti)}.

In our example, we have Pos(P, D ⇒ P) = {2} = Pos+(D ⇒ P) and Pos(P, P) =
{ε} = Pos+(P). Thus, Acc(Σ) = {1} and Acc(; ) = {1, 2}.

We now define the functional the least fixpoint of which will provide the
interpretation of base types.

Lemma 8. The function F I
R(B) = {t ∈ SNB | ∀fT⇒Bt, t →∗ ft ⇒ ∀i ∈

Acc(f), ti ∈ [[Ti]]IR} is a monotone function on IR.

Proof. We first prove that P = F I
R(B) ∈ QB

R.

(1) P ⊆ SNB by definition.
(2) Let t ∈ P , t′ ∈ →(t), f : T ⇒ B and t such that t′ →∗ ft. We must prove

that t ∈ [[T ]]R. It follows from the facts that t ∈ P and t→∗ ft.
(3) Let tB neutral such that →(t) ⊆ P . Let fT⇒B, t such that t →∗ ft and

i ∈ Acc(f). We must prove that ti ∈ [[Ti]]R. Since t is neutral, t �= ft. Thus,
there is t′ ∈ →(t) such that t′ →∗ ft. Since t′ ∈ P , ti ∈ [[Ti]]R.

For the monotony, let ≤+ = ≤ and ≤− = ≥. Let I ≤ J iff, for all B, I(B) ⊆
J(B). We first prove that [[T ]]IR ⊆δ [[T ]]JR whenever I ≤ J and Pos(B, T ) ⊆
Posδ(T ), by induction on T .
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– Assume that T = C ∈ B. Then, δ = +, [[T ]]IR = I(C) and [[T ]]IR = J(C). Since
I(C) ⊆ J(C), [[T ]]IR ⊆ [[T ]]IR.

– Assume that T = U ⇒ V . Then, Pos(B, U) ⊆ Pos−δ(U) and Pos(B, V ) ⊆
Posδ(V ). Thus, by induction hypothesis, [[U ]]IR ⊆−δ [[U ]]JR and [[V ]]IR ⊆δ [[V ]]JR.
Assume that δ = +. Let t ∈ [[T ]]IR and u ∈ [[U ]]JR. We must prove that
tu ∈ [[V ]]JR. Since [[U ]]IR ⊇ [[U ]]JR, tu ∈ [[V ]]IR. Since [[V ]]IR ⊆ [[V ]]JR, tu ∈ [[V ]]JR.
It works similarly for δ = −.

Assume now that I ≤ J . We must prove that, for all B, F I
R(B) ⊆ F J

R(B).
Let B ∈ B and t ∈ F I

R(B). We must prove that t ∈ F J
R(B). First, we have

t ∈ SNB since t ∈ F I
R(B). Assume now that t →∗ fT⇒Bt and let i ∈ Acc(f).

We must prove that ti ∈ [[Ti]]JR. Since t ∈ F I
R(B), ti ∈ [[Ti]]IR. Since i ∈ Acc(f),

Pos(B, Ti) ⊆ Pos+(Ti) and [[Ti]]IR ⊆ [[Ti]]JR. ��

Definition 8 (Computability). Let IR be the least fixpoint of FR. A term
t : T is computable if t ∈ [[T ]]IR

R .

In the following, we drop the superscript IR in [[T ]]IR

R .
One can check that all the proofs of computability properties are still valid

except the one for (C4) for which we give a new proof:

Lemma 9 (C4). A term ft : B is computable whenever t are computable and
every head-reduct of ft is computable.

Proof. We first need to prove that ft is SN. This follows from the previous
proof of (C4). Assume now that ft →∗ gu and i ∈ Acc(g). We prove that ui

is computable by induction on t with →prod as well-founded ordering (t are
computable). If ft = gu, then ui = ti is computable by assumption. Otherwise,
ft → v →∗ gu. If v is a head-reduct of ft, then v and ui are computable.
Otherwise, we conclude by induction hypothesis. ��

The least fixpoint of FR is reachable by transfinite iteration from the smallest
element of IR. This provides us with an ordering that can handle definitions on
higher-order data types.

Definition 9 (Size ordering). For all B ∈ B and t ∈ [[B]]R, let the size of t be
the smallest ordinal oB

R(t) = a such that t ∈ F a
R(∅)(B), where F a

R is the transfinite
a-iteration of FR. Let �R be the union of all the relations �T

R inductively defined
on [[T ]]R as follows:

– t �B
R u if oB

R(t) ≥ oB
R(u).

– t �T⇒U
R u if, for all v ∈ [[T ]]R, tv �U

R uv.

In our example, we have [[P]]R = {t ∈ SNP | ∀fT⇒Pt, t →∗ ft ⇒ ∀i ∈
Acc(f), ti ∈ [[Ti]]R}. Since Acc(Σ) = {1}, if ΣP ∈ [[P]]R then, for all d ∈ [[D]]R,
Pd ∈ [[P]]R and oP

R(Pd) < oP
R(ΣP ).

We immediately check that the size ordering is well-founded.
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Lemma 10. �R is a well-founded quasi-ordering containing →.

Proof. The relation �R is the union of pairwise disjoint relations. Hence, it
suffices to prove that each one is transitive and well-founded. We proceed by
induction on T . For T ∈ B, this is immediate. Assume now that (ti)i∈N is an
increasing sequence for �T⇒U

R . Since variables are computable, let x ∈ [[T ]]R. By
definition of �T⇒U

R , (tix)i∈N is an increasing sequence for �U
R. ��

(>base)
i ∈ Acc(g) b ∈ X \ FV(l)

gA⇒BaA >l aB⇒B
i bB

(>lam)
a >l bx x ∈ X \ (FV(b) ∪ FV(l))

λxa > b

(>red)
a >l b b →β c

a >l c

(>trans)
a >l b b >l c

a >l c

Fig. 3. Accessibility ordering

We now define some relation strong enough for capturing definitions on higher-
order data types and with which �R is closure-compatible.

Lemma 11. �R is closure-compatible with the family (>l)l∈T defined Figure 3.

Proof. We prove that aθ �R bθ whenever a >l b, aθ and bθ are computable, and
θ is computable on X \ FV(l).

(>base) By definition of IR, oR(gaθ) = a + 1 and aiθ ∈ [[B ⇒ B]]I
a
R

R . Since
b ∈ X \FV(l) and θ is computable on X \FV(l), bθ are computable. Therefore,
aiθbθ ∈ Ia

R(B) and aR(gaθ) > a ≥ oR(aiθbθ).
(>lam) Let w : τx computable. Wlog we can assume that x /∈ dom(θ) ∪

codom(θ). Hence, (λxa)θ = λxaθ. We must prove that (λxaθ)w �R bθw.
By β-reduction, (λxaθ)w �R aθw

x . By induction hypothesis, aθw
x �R (bx)θw

x .
Since x /∈ FV(b) ∪ dom(θ) ∪ codom(θ), (bx)θw

x = bθw.
(>red) By induction hypothesis and since →β ⊆ �R.
(>trans) By induction hypothesis and transitivity of �R. ��

By property (C2) and Lemma 4, it follows that → = →β ∪→R is well-founded
if, for all rule f l → r ∈ R, r ∈ CCf

>(l).
Note that we could strengthen the definition of (>l)l∈T by taking in (>base),

when l = f l, b ∈ CCf
>(l) instead of b ∈ X \ FV(l), making the definitions of >

and CC> mutually dependent. See [7] for details.
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8 The Recursive Computability Ordering

We now show how the computability closure can be turned into a well-founded
ordering containing the monomorphic version of Jean-Pierre Jouannaud and
Albert Rubio’s higher-order recursive path ordering [25].

Indeed, consider the relation CR(>) = {(f l, r) | r ∈ CCf
>(l), FV(r) ⊆

FV(l), τ(f l) = τ(r)} made of all the rules which right-hand side is in the com-
putability closure of its left-hand side. After (C2) and Lemma 3, →β ∪→CR(>)

is well-founded whenever > is well-founded and stable by substitution. Hence,
CR(>) is itself well-founded and stable by substitution whenever > is well-
founded and stable by substitution.

We now observe that the function mapping > to CR(>) is monotone wrt
inclusion. It has therefore a least fixpoint that is stable by substitution and
which closure by context is well-founded when combined with →β .

Lemma 12. The function mapping > to the relation CR(>) = {(f l, r) | r ∈
CCf

>(l), FV(r) ⊆ FV(l), τ(f l) = τ(r)} is monotone wrt inclusion on the set of
well-founded relations stable by substitution.

Proof. Assume that >1 ⊆ >2. One can prove by induction on (f l, r) ∈ CR(>1)
that (f l, r) ∈ CR(>2). In the (call) case, we use the fact that the function
mapping > to >stat is monotone wrt inclusion.

Now, assume that > is well-founded and stable by substitution. After (C2)
and Lemma 3, →β ∪ →CR(>) is well-founded. Thus, CR(>) is well-founded.
Now, one can check that CR(>) is stable by substitution whenever > is stable
by substitution. ��

Definition 10. Let the weak higher-order recursive computability (quasi-) or-
dering >whorco be the least fixpoint of CR, and the higher-order recursive com-
putability (quasi-) ordering >horco be the closure by context of >whorco.

In Figure 4, we give an inductive presentation of >horco obtained by replacing
u ∈ CCf

>(l) by f l > u in Figure 1, and adding a rule (cont) for the closure by
context and a rule (rule) for the conditions on rules.

Strictly speaking, >horco, like >horpo, is not a quasi-ordering. One needs to
take its transitive closure to get a quasi-ordering. On the other hand, one can
check that >whorco is transitive, hence is a true quasi-ordering (note that, if
t >whorco u, then t is of the form ft).

Moreover, since >whorco is not closed by context, it is better suited for proving
the termination of rewrite systems by using the dependency pair method [1,42,3].

We now would like to compare this ordering with the monomorphic version of
>horpo which definition is reminded in Figure 5. To this end, we need to slightly
strengthen the definition of computability closure by replacing > by its closure
by context →>, and by adding the following deduction rule:

(red)
u ∈ CCf

>(l) u > v

v ∈ CCf
>(l)
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(cont)
t >whorco u p ∈ Pos(C)

C[t]p >horco C[u]p

(rule)
tT > uU FV(u) ⊆ FV(t) T = U

t >whorco u

(arg) fl > li

(decomp-symb)
fl > gu i ∈ Acc(g)

fl > ui

(prec)
f >F g

fl > g

(call)
f F gU ⇒U fl > uU l (>whorco)statf u

fl > gu

(app)
fl > uV ⇒T fl > vV

fl > uv

(var)
x /∈ FV(l)

fl > x

(lam)
fl > u x /∈ FV(l)

fl > λxu

Fig. 4. Higher-order computability ordering

One can check that all the properties are preserved. More details can be found
in [7]. Hence, we get the following additional deduction rules for >whorco:

(call)
f )F gU⇒U f l > uU l (>horco)statf

u

f l > gu

(red)
f l > u u >horco v

f l > v

We now prove that >horpo is included in the transitive closure of >horco.

Lemma 13. >horpo ⊆ >+
horco.

Proof. Note that FV(u) ⊆ FV(t) and T = U whenever tT >horpo uU (>horpo is
a set of rules).

We first prove the property (*): ft > v whenever tj >∗
horco v or ft >+

horco v.
Assume that tj >∗

horco v. By (arg), ft > tj. Thus, by (red), ft > v. Assume now
that ft >horco u >∗

horco v. By (red), it suffices to prove that ft > u. There are
two cases:
– ft = fatkb, u = fat′kb and tk >horco t′k. We conclude by (call).
– ft=f lb, u=rb and f l>whorcor. One can check that f lt>rt whenever f l>r.
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P (f, t, u) = ft >horpo u ∨ (∃j) tj ≥horpo u

(1)
ti ≥horpo u

fT ⇒T tT >horpo uT

(2)
f >F g P (f, t, u)

fT ⇒T tT >horpo gU⇒T uU

(3)
f F g statf = mul t (>horpo)statf u

fT ⇒T tT >horpo gU⇒T uU

(4)
f F g statf = lex t (>horpo)statf u P (f, t, u)

fT ⇒T tT >horpo gU⇒T uU

(5)
P (f, t, u)

fT ⇒T t >horpo uT

(6)
{t1, t2} (>horpo)mul {u1, u2}

tU⇒T
1 tU

2 >horpo uV ⇒T
1 uV

2

(7)
t >horpo u

λxt >horpo λxu

Fig. 5. HORPO [25]

We now prove the theorem by induction on >horpo.
(1) By induction hypothesis, ti >∗

horco u. By (arg), ft > ti. Since ti >horpo u
and ft >horpo u, ft → ti is a rule. Thus, ft >whorco ti and, by (red),
ft >whorco u.

(2) By induction hypothesis, for all i, ft >+
horco ui or tj >∗

horco ui. Hence, by
(*), ft > u. By (prec), ft > g. Thus, by (app), ft > gu. Since ft → gu is
a rule, ft >whorco gu.

(3) By induction hypothesis, t (>+
horco)mul u. Hence, by (*), ft > u. Thus, by

(call), ft > gu. Since ft→ gu is a rule, ft >whorco gu.
(4) By induction hypothesis, t (>+

horco)statf
u and, for all i, ft >+

horco ui or
tj >∗

horco ui. Hence, by (*), ft > u. Thus, by (call), ft > gu. Since ft → gu
is a rule, ft >whorco gu.

(5) By induction hypothesis, for all i, ft >+
horco ui or tj >∗

horco ui. Hence, by
(*), ft > ui for all i. Thus, by (app), ft > u. Since (ft, u) is a rule,
ft >whorco u.

(6) For typing reasons, (t1, u1) (>horpo)prod (t2, u2). Thus, by induction hy-
pothesis, (t1, u1) (>+

horco)prod (t2, u2). Hence, by (cont) and transitivity,
t1t2 >+

horco u1u2.
(7) By induction hypothesis, t >+

horco u. Thus, by (cont), λxt >+
horco λxu. ��
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We observe that, if (6) were restricted to (t1 >horpo u1 ∧ t2 = u2) ∨ (t1 =
u1∧ t2 >horpo u2), then we would get >horpo ⊆ >horco, since this is the only case
requiring transitivity.

Note that >horco can be extended with the accessibility ordering defined in
Figure 3. The details can be found in [7].

Finally, we remark that, when restricted to first-order terms, the recursive
computability ordering is equal to the usual first-order recursive path ordering
[41,14], the subterm rule being simulated by (arg) and (red).

Lemma 14. The relation defined in Figure 4 by the rules (arg), (decomp-symb),
(call) and the rule:

(prec-app)
f >F gU⇒U f l > uU

f l > gu

is equal to the usual first-order recursive path ordering.

9 Conclusion

We show through various extensions how powerful is the notion of computability
closure introduced by Jean-Pierre Jouannaud and Mitsuhiro Okada. In partic-
ular, we show how it can easily be turned into a well-founded ordering con-
taining Jean-Pierre Jouannaud and Albert Rubio’s higher-order recursive path
ordering. This provides a simple way to extend this ordering to richer type dis-
ciplines. However, its definition as the closure by context of another relation is
not completely satisfactory, all the more so since one wants to combine it with
the accessibility ordering. We should therefore try to find a new definition of
HORPO that nicely integrates the notions of computability closure and accessi-
bility ordering in order to capture definitions on higher-order data types (data
types with constructors having functional recursive arguments).
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Abstract. In this paper we review some well-known theory about re-
duction strategies of various kinds: normalizing, outermost-fair, cofinal,
Church-Rosser. A stumbling block in the definition of such strategies
is the presence of reduction cycles that may ‘trap’ a strategy as it is
memory-free. We exploit a recently (re)discovered fact that there are no
reduction cycles in orthogonal rewrite systems when each term has a
normal form, in order to enhance some of the theorems on strategies,
both with respect to their scope and the proof of their correctness.

Dedicated to Jean-Pierre Jouannaud
on the occasion of his 60th birthday

1 Introduction

The general objective of our note is to survey some fundamental theorems about
reduction strategies in term rewriting, both first-order and higher-order. Some of
these theorems are by now rather classical, and some are of a more recent date.
The strategies serve various purposes: they may be normalizing, or outermost-
fair, or cofinal, or Church-Rosser strategies, to name some of their more impor-
tant properties. One liability they have in common: they may fall into a trap
formed by a reduction cycle. This is so because the usual notion of a reduction
strategy is such that no memory is involved: a reduction strategy F is just a
function from terms to terms, such that for every term t that is not in normal
form we have t → F(t) in case F is a one-step strategy, and t →→ F(t) in case
F is a many-step strategy. Thus, if we have for a one-step strategy F that e.g.
F3(t)≡t (see Figure 1), then F will be forever trapped in this reduction cycle

t→ F(t) → F(F(t))→ t

The danger of a strategy being trapped in a reduction cycle is apparent in the
proofs of several theorems about strategies. E.g. avoiding cycles is prominent in

H. Comon-Lundh et al. (Eds.): Jouannaud Festschrift, LNCS 4600, pp. 89–112, 2007.
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t = F3(t) = F6(t) = ...

F(t) = F4(t) = F7(t) = ...

F2(t) = F5(t) = F8(t) = ...

Fig. 1. Trap

the proof that there exists a computable many-step Church-Rosser strategy for λ-
calculus [5,3], discussed in Section 6. And avoiding cycles is a major complicating
factor in Statman’s definition of a cofinal strategy for combinators [14].

Now recently it was found by Ketema et al. [7] that under very natural con-
ditions there are no reduction cycles at all. Of course, if the rewrite system has
the property SN, strong normalization (or termination), there are no reduction
cycles. But this is a bit too strong. Ketema et al. [7] proved that for orthogonal
term rewriting systems that are WN, weakly normalizing, there are already no
cycles, a property that we indicate by AC (acyclicity). This theorem generalizes
to a wide class of rewrite systems, namely the weakly orthogonal fully extended
higher-order rewriting systems. Actually, this theorem was for the case of almost
orthogonal combinatory reduction systems already proved in a rather implicit
way in Kennaway [6], but there it has remained unnoticed until now.

Combining our first observation of the ‘cycle trap’ for strategies with this
recent insight that we have WN ⇒ AC for orthogonal rewrite systems, there
arises a natural question: does the acyclicity of orthogonal systems that are
WN facilitate the proofs of the theorems for reduction strategies that are in the
literature?

The goal of our note is to show that the answer is affirmative. In doing so,
we obtain a strengthening of some of the theorems known for strategies, and
a simplification of some of their proofs. We also present some new theorems.
Finally, we employ in our formulation a notion of strategy, based on abstract
rewriting notions, that is more expressive than the classical (functional) notion.

2 Basic Notions

2.1 Abstract Rewriting

We start by introducing the necessary notions and notations concerning abstract
rewriting, where the objects that are rewritten do not have any observable struc-
ture. One of the usual definitions of abstract rewriting is as a set equipped with
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a binary relation (as in [2, p.7], and as a special case of [15, Definition 1.1.1]).
Here we take another approach, via the more expressive notion of ARS as in [15,
Definition 8.2.2], where steps are first-class citizens.

Definition 1. An abstract reduction system (ARS) is defined as a quadruple

(A, Φ, source, target)

where A is a set of objects, Φ a set of steps, and source : Φ → A and target : Φ→ A
are functions mapping a step to its source and target. ARSs are denoted by
→,⇒, . . ., and also by A, B, S, F, . . ..

We can think of an ARS as a graph. There might be more than one step between
two objects, so we can express more than binary relations on a set.

Example 1. See also Figure 2.

(i) The ARS A1 = (A1, Φ1, source1, target1) is defined by: A1 = {a, b}, Φ1 =
{φ1, φ2}, source1(φ1) = a, target1(φ1) = a, source1(φ2) = a, target1(φ2) = b.

(ii) The ARS A2 = (A2, Φ2, source2, target2) is defined by: A2 = {a, b}, Φ2 =
{φ1}, source2(φ1) = a, target2(φ1) = a.
So the underlying graph of an ARS is not necessarily connected.

(iii) The ARS A3 = (A3, Φ3, source3, target3) is defined by: A3 = {a, b}, Φ3 =
{φ2}, source3(φ2) = a, target3(φ2) = b.

(iv) The ARS A4 = (A4, Φ4, source4, target4) is defined by: A4 = {a, b}, Φ4 =
{φ2, φ3}, source4(φ2) = source4(φ3) = a, target4(φ2) = target4(φ3) = b.
In A4 there are two different steps from a to b, hence it cannot be given as
a relation on a set. This phenomenon occurs for instance in λ-calculus with
β-reduction: there are two different steps from I (I I) to I I.

(v) The well-known counter-example against the implication ‘local confluence
implies confluence’ is defined as the following ARS A5: A = {a, b, c, d}, Φ =
{φ1, φ2, φ3, φ4}, source(φ1) = b, target(φ1) = a, source(φ2) = b, target(φ2) =
c, source(φ3) = c, target(φ3) = b, source(φ4) = c, target(φ4) = d.

In some of the examples in the paper, we will write ARSs in a simplified notation,
namely as a set of arrows with source and target. It is then understood that the
set of objects is the set of objects mentioned, and that source and target are as
suggested by the explicit enumeration of the arrows. For instance the ARS A5

from Example 1 is then written as {b → a, b→ c, c→ b, c → d}.
The definition of strategy below employs the following definition of sub-ARS.

Definition 2. An ARS A1 = (A1, Φ1, source1, target1) is a sub-ARS of an ARS
A2 = (A2, Φ2, source2, target2), notation A1 ⊆ A2, if the following holds:

(i) A1 ⊆ A2,
(ii) Φ1 ⊆ Φ2,
(iii) source1 and target1 are the restrictions of source2 and target2 to Φ1.

If we think of an ARS as a graph, a sub-ARS is a sub-graph, with possibly less
objects and less steps. The last condition of the definition of sub-ARS implies
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3 41
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Fig. 2. The ARSs from Example 1

that source(Φ1) ⊆ A1 and also target(Φ1) ⊆ A1, that is, the sources and targets
of steps in the small ARS must be present in its set of objects. Note that ⊆ is a
partial order on ARSs. The definition of sub-ARS used here is different from for
instance [15, Definition 1.1.6]: there the set of objects of the ‘small’ ARS must
be closed under the steps of the ‘big’ ARS. See also the example below.

Example 2.

(i) An ARS is a sub-ARS of itself: A ⊆ A.
(ii) For the ARSs defined of Example 1 we have: A2 ⊆ A1, A3 ⊆ A1, A3 ⊆ A4.
(iii) There is no sub-ARS of the ARS A3 from Example 1 with ∅ as set of objects,

and {φ2} as set of steps.
(iv) The ARS a without any steps is a sub-ARS of a → b. So the set of objects

of the ‘small’ ARS need not to be closed under the reduction of the ‘big’
ARS.

In the remainder of this subsection we assume an ARS A = (A, Φ, source, target).
A reduction step or rewrite step is an element of Φ, together with its source

and target. Reduction steps are written as φ : a → b or a →φ b, for a step
φ ∈ Φ. An object a ∈ A is a normal form (or a is in normal form) if there is
no reduction step a → with source a. A reduction or rewrite sequence starting
in a0 is a finite or infinite sequence of steps: a0 →φ0 a1 →φ1 a2 →φ2 . . .. A finite
reduction a0 →φ0 . . . →φn−1 an is said to be a reduction from a0 to an. Such
a reduction is also written as a0 →→ an. A reduction is said to be maximal if it
cannot be extended, that is, either it ends in a normal form or it is infinite.

We sometimes omit irrelevant information from this notation, writing for in-
stance a → to indicate that there is a step from a, or a →→ to indicate a finite
or infinite reduction starting in a. If we want to stress that a step (or reduction)
takes place in the ARS A we use A as subscript.

The reduction graph of a in A, notation G(a, A), has as set of objects {b | a→→
b}, and as set of steps all φ ∈ Φ with source(φ) ∈ {b | a→→ b}. Further, the source
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and target functions of G(a, A) are the appropriate restrictions of source and
target. A reduction graph is a sub-ARS of A.

An object a ∈ A is weakly normalizing in A, notation a ∈ WN(A), if there is
a reduction sequence in A from a to a normal form of A. The ARS A is weakly
normalizing, notation A ∈ WN, if all objects a ∈ A are weakly normalizing in
A. An object a ∈ A is strongly normalizing in A or terminating in A, notation
a ∈ SN(A), if all reduction sequences starting in a are finite. The ARS A is
strongly normalizing or terminating, notation A ∈ SN, if all objects a ∈ A are
strongly normalizing in A. It may happen that an object is weakly normalizing
in an ARS but not in a sub-ARS. For example, considering the ARSs of Example
1, we have a ∈WN(A1), but a is not weakly normalizing in A2 ⊆ A1.

The ARS A is confluent if the endpoints of all pairs of co-initial reductions
are joinable, so for all objects a, b, b′ ∈ A: if a →→ b and a →→ b′ then b ↓A b′.

2.2 Term Rewriting

We use the standard notions and notations from [2,15] for first-order term rewrit-
ing systems (TRSs). We also consider higher-order rewriting systems with pat-
terns (HRSs), defined by Nipkow [11]. At some places in the literature these
are called PRSs. The terms are simply typed λ-terms with constants, that are
considered modulo αβη. Rules satisfy the patterns restriction that guarantees
matching (and unification) modulo βη to be decidable. See also [15, Chapter 11]
for definitions and notations.

A term rewriting system is orthogonal if all rewrite rules are left-linear and
there are no critical pairs. A term rewriting system is weakly orthogonal if all
rewrite rules are left-linear and all critical pairs are trivial (so overlapping steps
yield the same result). Almost orthogonal is in between orthogonal and weakly
orthogonal: trivial critical pairs are allowed but only if the overlap is at the top.

Definition 3. A rewrite rule is fully extended if in the left-hand side every free
variable has as arguments exactly all variables that are bound at that position.

In fully extended systems, whether a rule is applicable does not depend on
whether or not a bound variable occurs. The rewrite rule f(λx. z)→ a with z a
free variable is not fully extended. The rule can only be applied to a term of the
form f(λx.s) if x does not occur in s. Another example of a rule that is not fully
extended is the η-reduction rule: λx.M x → M , with the side-condition that x
should not occur in the free variables of M .

2.3 Reduction Strategies

A common approach in the literature is that a strategy, intuitively speaking, tells
us how to reduce a term. That is, a strategy tells us how we must reduce a term.
Then a strategy is a function from terms to terms, and hence deterministic, as in
the Introduction. But we can also adopt a more general point of view: a strategy
tells us how we may reduce a term. Following [15, Definition 9.1.1], see also [16],
we take the latter approach.
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Definition 4. A strategy for an ARS → is a sub-ARS of → having the same
objects and normal forms.

So a strategy has the same objects as the original ARS, but possibly less arrows.
Also, an object is a normal form in the strategy exactly if it is a normal form
in the original ARS. The explanation for the requirement that a strategy has
the same normal forms as the original ARS is that we want the strategy to
be ‘pushy’: whenever there are still possibilities (steps, edges) to proceed, the
strategy will select a positive number of them, and not discard them all. So a
strategy can only stop in a normal form, but not before. Note that ‘strategy for’
is transitive: a strategy S for a strategy S′ for an ARS A is again a strategy for
A. Thus we have a notion of refinement of strategies.

Example 3.

(i) An ARS is a strategy for itself. In fact, this is the strategy of exhaustive
search. This also shows that a strategy may be non-deterministic.

(ii) We consider the following ARS A from [15, Example 9.1.2]: a
←→ b → c.

Then a → b → c is a strategy for A. The sub-ARS b → c is not a strategy for
A, because it does not have the same objects as A. The sub-ARS a ← b → c
is not a strategy for A either, because a is not a normal form in A.

(iii) We reconsider the ARSs of Example 1. A2 and A3 are both strategies for
A1. Also, A3 is a strategy for A4.

(iv) Consider following ARS: B = {a → b, a → c, a → d, d → d}. Then S =
{a→ b, a → c, d→ d} is a non-deterministic strategy for B.

Properties of strategies. A strategy is usually employed to obtain a reduction
with a certain property.

Definition 5. Let S be a strategy for A = (A, Φ, source, target).

(i) S is normalizing if a ∈ SN(S) for every object a ∈ WN(A).
(ii) S is cofinal if the following holds: for every a ∈ A, for every finite reduction

R : a →→ a′ in A, for every maximal reduction S : a →→ in S, there is an
object c in S such that a′ →→ c in A. See Figure 3.

In Example 1, the ARS A3 is a normalizing strategy for A1. An ARS is not
necessarily a cofinal strategy for itself. For instance, in the ARS A1 of Example
1 the final object b of the reduction a → b cannot be reduced to an object in the
maximal reduction a → a → a → . . .. Also in this possibly non-deterministic
setting cofinal strategies are normalizing [15, Proposition 9.1.16].

Proposition 1 ([15]). Cofinal strategies are normalizing.

Church-Rosser strategies. We now focus on a subclass of strategies. A strategy
is said to be deterministic or functional if every object is the source of at most
one arrow. Reconsidering the ARSs of Example 1, both A2 and A3 are functional
strategies for A. The ARS A1 is also a strategy for itself, which is not functional.
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a

S
a’

c

R

S

Fig. 3. A cofinal strategy

A function from terms to terms that maps a normal form to itself, and a term
that is not in normal form to one of its one-step reducts, naturally induces a de-
terministic (or functional) strategy. Therefore we use in the setting of functional
strategies also the notation Fn(a) for the object reached by performing n steps
according to F, starting in a (with F(a) ≡ a if a is in normal form).

Definition 6. A deterministic (or functional) strategy F for an ARS A is said
to be a Church-Rosser strategy for A, also called a CR-strategy for A, if the
following holds: if a =A b then ∃n, m ∈ N : Fn(a) ≡ Fm(b). See also Figure 4.

a b

F(a)
F2(a)

Fn(a)
Fn+1(a)

F(b)
F2(b)

Fm(b)

Fm+1(b)

Fig. 4. One-step CR-strategy

In Section 6 we will also consider many-step functional Church-Rosser strategies,
where intuitively a term not in normal form is mapped to some reduct (where
the reduct is reached in at least one step).

Overview of properties of strategies. We conclude this section with a picture
(Figure 5) of properties of reduction strategies, for abstract rewriting and term
rewriting, and their interrelations. The notions fair and leftmost-fair are included
for completeness and do not play a rôle in the remainder of the paper. The impli-
cation ‘cofinal implies normalizing’ is Proposition 1. The implication ‘Church-
Rosser implies cofinal’ is Theorem 8, which is concerned with functional (or
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deterministic) strategies. The implication ‘normalizing implies Church-Rosser’
holds for functional strategies in weakly normalizing and confluent ARSs: a nor-
malizing strategy then yields a common reduct of two convertible objects by
computing their normal forms, which are the same. The implication ‘outermost-
fair implies normalizing’ is Theorem 7, which is concerned with the more general
setting of weakly orthogonal and fully extended HRSs.

Church-Rosser

fair

leftmost fair

outermost faircofinal

normalizing

if WN
and CR

if left-normal

term strategies for
orthogonal TRSs

abstract strategies

Fig. 5. Overview of reduction strategies

3 A Normalizing Strategy

A normalizing strategy is of interest in the case that a rewriting system has
terms that can be rewritten to normal form, but are also the starting point of
an infinite reduction. This happens for instance to the term K I ((S I I) (S I I)) in
Combinatory Logic (CL) which is defined by the rewrite rules

I x → x
K xy → x
S x y z → x z (y z)

For (pure) CL the leftmost-outermost strategy is normalizing. But let us now
consider CL extended with Gustave’s term rewriting system which is defined by
the following rules:

g(a, b, x)→ c
g(x, a, b)→ c
g(b, x, a)→ c

How should we evaluate a term of the form g(l, m, r) with l, m, and r redexes of
(pure) CL? Such a term intuitively seems to require parallel evaluation because
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it is undecidable whether a CL term has a (head) normal form. Nevertheless,
Kennaway [6] proves, surprisingly, that there is a normalizing one-step strat-
egy for the combination of CL and Gustave’s TRS. More precisely, Kennaway
proves that almost orthogonal Combinatory Reduction Systems (CRSs) have a
computable one-step normalizing strategy. This means that also λ-calculus with
parallel-or, defined by

(λx. z) z′ → z[x := z′]
por(t, z) → t
por(z, t) → t
por(f, f) → f

has a computable one-step normalizing strategy, although intuitively it seems
that a term por(M, N) with M and N λ-terms requires a parallel evaluation.

Antoy and Middeldorp [1] define a computable one-step strategy for almost
orthogonal term rewriting systems, and show that it is normalizing via a reduc-
tion to normalization of outermost-fair rewriting. In this section we present two
observations concerning their strategy. The first observation is that the definition
of the strategy, and the proof of its normalization, can be extended to the case
of fully extended weakly orthogonal higher-order rewriting. The second observa-
tion is that the definition of the strategy can be made substantially simpler for
weakly normalizing systems, because then we do not have to deal with cycles.

The strategy SF . We define a non-deterministic strategy SF for higher-order
rewriting. The definition is a minor adaptation of the definition by Antoy and
Middeldorp [1]. We use the notation SF from [15]; the notation used in [1] is Sω .

In the definition of SF for higher-order rewriting we make use of the notion
‘acyclicity-check’. In general, it is undecidable whether a term cycles. However,
for finite systems, it is decidable whether a term t cycles within its own height,
that is, is on a cycle where all terms are at most as big as t itself. More in
particular, it is also decidable whether a terms cycles according to a strategy
within its own height.

Definition 7. Assume a HRS R. The strategy SF and the property ACSF of
passing the SF -acyclicity-check are defined by induction on the structure of
terms as follows:

(i) Given a term s, the strategy SF can perform the following steps:
(a) if s is a redex, then SF can only contract a redex at the root,
(a) otherwise, SF is applied to a smallest direct argument satisfying ACSF ,
(a) otherwise, SF can perform any step.

(ii) A term t satisfies ACSF , or otherwise said passes the SF -acyclicity-check, if
it is not on a SF -cycle in which all terms are at most as big as t. Otherwise,
it fails the acyclicity-check.

The strategy SF is an outermost strategy that is only unfair to redexes that
intuitively do not contribute to the normal form because they cycle. Below (The-
orem 1) we show that SF is normalizing.
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Note that in the definition of SF -acyclicity-check for a term t, we only need
the definition of SF on terms smaller than t. Since overlap is allowed, a redex at
the root is not necessarily unique.

Further, SF is a non-deterministic strategy. If the first clause of the definition
applies, then there is possibly a choice between overlapping root-redexes. If the
second clause of the definition applies, there is a choice between all smallest
reducible arguments that pass the SF -acyclicity-check. In addition, there might
be a choice between overlapping redexes.

Example 4. We consider the orthogonal TRS defined by the following rules:

f(x, g′(y), h′(z))→ b
a → a
b → g(g(b))
g(x) → g′(x)
h(x) → h′(x)

An example of a reduction according to SF :

f(a, b, h(b))→
the argument a fails the acyclicity-check
b is the smallest reducible argument passing the acyclicity-check

f(a, g(g(b)), h(b))→
h(b) is the smallest reducible argument passing the acyclicity-check

f(a, g(g(b)), h′(b)) →
h′(b) is the smallest reducible argument passing the acyclicity-check

f(a, g(g(b)), h′(g(g(b)))) →
g(g(b)) is the smallest reducible argument passing the acyclicity-check

f(a, g′(g(b)), h′(b))→
there is a root-redex

b

The strategy SF skips arguments that are SF -cyclic within their own height.
One might wonder whether we could skip more arguments, while remaining
normalizing. The following examples shows that skipping arguments that are
cyclic (but not necessarily SF -cyclic) destroys normalization of SF .

Example 5. We consider the orthogonal TRS defined by the following rules:

a → b
c → c
g(b, y) → d
h(d, y)→ e

The term h(g(a, c), c) has a normal form which is indeed found in the following
SF -rewrite sequence:

h(g(a, c), c)→ h(g(b, c), c)→ h(d, c) → e

However, if we adapt the definition of the strategy in the sense that we skip
arguments that cycle within their own height, then we skip the argument g(a, c)
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because g(a, c) → g(a, c), and we also skip the argument c because c → c. In
other words, both arguments are skipped, and the third clause of the definition
of the strategy applies. That is, also

h(g(a, c), c)→ h(g(a, c), c)→ . . .

is a rewrite sequence according to the strategy. So this adaptation yields a strat-
egy that is not normalizing.

One might also wonder whether we could skip fewer arguments, while remaining
normalizing. The following example shows that skipping arguments if all their
reductions are cyclic within their own height (so an argument that is SF -cyclic
within its own height but also has another reduction is not skipped anymore)
destroys normalization of SF .

Example 6. We consider the orthogonal TRS defined by the following rules:

a → f(a)
g(x) → g(x)
h(x) → h′(x)
j(h′(x), y) → b

The term j(h(h(x)), g(a)) has a normal form. Indeed the following SF -rewrite
sequence finds the normal form:

j(h(h(x)), g(a)) → j(h′(h(x)), g(a)) → b

Note that the argument g(a) is skipped because it is SF -cyclic within its own
height. However, if we adapt the definition of the strategy by skipping arguments
if all their reductions are cyclic within their own height, then the argument g(a)
is no longer skipped. In that case we obtain the following rewrite sequence:

j(h(h(x)), g(a)) → j(h(h(x)), g(a)) → . . .

So this change in the condition on skipping arguments makes that the strategy
is no longer normalizing.

Normalization via outermost-fair rewriting. One can show that if the strategy
SF fails to normalize a term s, then there is an infinite outermost-fair rewrite se-
quence starting from s. Section 5 is concerned with outermost-fair rewriting and
in particular contains the theorem that outermost-fair rewriting is normalizing
for HRSs that are fully extended and weakly orthogonal from [13].

Theorem 1. Assume a fully extended and weakly orthogonal HRS. If there is an
infinite SF -rewrite sequence starting from s, then there is an infinite outermost-
fair rewrite sequence starting from s.

Proof. We only give the idea of the proof. Suppose that there is an infinite SF -
rewrite sequence starting in s. An outermost redex that is unfairly treated is
on a SF -cycle. Also, it is disjoint from other such redexes. A SF -cycle can be
made outermost-fair. Now interleave the original infinite SF -rewrite sequence
repeatedly with extra reductions on the place of the cycles, to obtain an infinite
outermost-fair reduction starting in s.
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Corollary 1. The strategy SF is a computable one-step normalizing strategy for
HRSs that are weakly orthogonal and fully extended.

Acyclic rewriting. A second observation is that for weakly normalizing systems,
the acyclicity-check can be omitted, thanks to Theorem 6. The definition of the
strategy then becomes more simple, and applying the strategy becomes essen-
tially easier.

Definition 8. Assume a weakly normalizing HRS R. The strategy S
AC
F is de-

fined by induction on the structure of terms as follows. Given a term s, the
strategy SAC

F can perform the following steps:

(i) if s is a redex, then SAC
F can only contract a redex at the root,

(ii) otherwise, SAC
F is applied to a smallest direct argument that is reducible.

We claim that SAC
F is outermost-fair. Hence by Theorem 7 it is normalizing.

4 Acyclicity

As argued in this paper, for several strategies their computability is seen to rely
on having a suitable cycle detection sub-routine available. As cycle detection is
complex, it is interesting to look at rewrite systems which do not need it, i.e.
which are acyclic. Then the sub-routine can simply answer: no, with a resulting
simplification, as exemplified in Definition 8. In this section, we recapitulate
some known acyclicity results and establish some new ones.

The following two classical acyclicity results for Combinatory Logic (CL) are
due to [9] and [5] respectively. Here we consider CL with basis {S, K, I} and the
following applicative rewrite rules:

I x → x
K xy → x
S x y z → x z (y z)

Theorem 2 ([9]). In Combinatory Logic, every finite reduction graph is acyclic.

This ‘finite acyclicity’ result is very much CL-specific. For instance, both the
term a in the single-rule orthogonal TRS {a → a} as well as the term Ω =
(λx.xx)(λx.xx) in the λ-calculus, have a single-node cyclic reduction graph. By
the theorem, since the reduction graph of the direct translation SII(SII) of Ω into
CL is cyclic: SII(SII) →→CL SII(SII) it can no longer be finite, and indeed it is not:
SII(SII) →→CL I(SII(SII)) →→CL I(I(SII(SII))) →→CL . . ..

Theorem 3 ([5]). In Combinatory Logic, S-terms are acyclic.

As it brings out nicely the minimal counter-example technique commonly em-
ployed in acyclicity proofs, we now present an alternative proof to this result.
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Proof. For a proof by contradiction, suppose a cycle σ : t  t of minimal
height would exist. By minimality σ is a head cycle, i.e. σ is of shape t 
S s u v → s v (u v)  t. Observe no S-step decreases size and only doesn’t in-
crease size if its third argument is an S. But then in the next head-step, the
term size increases, because no term other than S reduces to S, in particular, u v
does not reduce to S.

Remark 1. Neither of Theorems 2 and 3 entails the other; S-terms may not be
terminating and thus have infinite reduction graphs, 1 and the example SII(SII)
above shows that general CL-terms need not be acyclic. It could be difficult to
find a common generalization, since the former result is even dependent on the
particular basis chosen (here {S, K, I}) as noted in [5].

Next we present two results allowing to infer acyclicity of a system from that
same property for its components. The first result is a special case of a more
general result due to Middeldorp and Ohsaki [10, Theorem 6.7].

Theorem 4 ([10]). The disjoint union R of two TRSs is acyclic if both com-
ponents are and either R is non-collapsing, or R is non-duplicating, or one of
the components is both non-collapsing and non-duplicating.

Here we complement the above result by showing that acyclicity is preserved
when combining orthogonal acyclic TRSs.

Theorem 5. Acyclicity is modular for orthogonal TRSs.

Proof. See Appendix A.

The proof method also yields modularity of absence of non-empty fixed-point
reductions of shape t  C[t] for orthogonal TRSs.

Remark 2. Both non-overlappingness and left-linearity are essential for acyclic-
ity to be modular, answering questions by Middeldorp: Let Rb either be the
overlapping left-linear TRS with rules {g(x, y) → x, g(x, y) → y} or the non-
overlapping non-left-linear TRS with rules {g(x, y, z, z)→ x, g(x, y, z, S(z)) →
y,∞→ S(∞)}. In either case, Rb is acyclic since applying a g-rule decreases
the number of g-symbols. Combining either with the acyclic orthogonal TRS
Rw {f(0, 1, x)→f(x, x, x)} yields a cyclic combination Rb -Rw, as can be seen
from f(0, 1, g(0, 1)) or f(0, 1, g(0, 1,∞,∞)), respectively.

Remark 3. First-orderness is also essential for modularity of acyclicity. The HRS
(higher-order pattern rewriting system in the sense of Nipkow) consisting of the
single rule

f(xyz.Z(x, y, z), W, V )→ Z(W, Z(V, W, f(xyz.Z(x, y, z), W, V )), V )

is acyclic (see below). The two-rule TRS

g(a, x, y)→ x

g(b, x, y)→ y

1 Remarkably termination is decidable for S-terms [17].
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is trivially acyclic. However, their combination is not as witnessed by

f(xyz.g(x, y, z), a, b)
→ g(a, g(b, a, f(xyz.g(x, y, z), a, b)), b)
→ g(b, a, f(xyz.g(x, y, z), a, b))
→ f(xyz.g(x, y, z), a, b)

The main feat of the HRS is that the lhs of its rule is embeddable into its
rhs, but only so in a non-empty context. If it were the case the context could
be empty, then the term substituted for Z should collapse both to its second
(y) and third (z) argument only depending on its first (x) argument, which is
impossible using only the first rule (see Appendix B). It is exactly this feature
which the two selection rules of the TRS bring.

Remark 4. We conjecture that the corresponding CRS rule (combinatory reduc-
tion system in the sense of Klop):

f([xyz]Z(x, y, z), W, V )→ Z(W, Z(V, W, f([xyz]Z(x, y, z), W, V )), V )

is acyclic as well. This does not follow directly from the above since the CRS
contains ‘spurious’ terms, i.e. terms such as f([x]f(x)) which are not the image
of a HRS term.

We conclude this section by discussing the relationship between normalization
and acyclicity. Of course SN ⇒ AC, i.e. termination trivially implies acyclicity.
More interesting is that in the presence of orthogonality weak normalization
implies acyclicity. This result was prefigured in Kennaway [6] and recently redis-
covered [7, Theorem 5.1], and extended [8, Theorem 3.1] by Ketema, Klop, and
van Oostrom.

Theorem 6. Assume a fully extended and weakly orthogonal HRS R. Then:

R ∈WN ⇒ R ∈ AC

We give a sketch of the proof as it again nicely illustrates the minimal counter
example technique, as well as the rôle of normalization of the outermost-fair
strategy.

Proof. Assume that the system is not acyclic. Take a minimal term t with a
cycle. That cycle contains a head step. As a consequence, t admits an infinite
reduction with infinitely many head steps. Clearly such a reduction is outermost-
fair, and since the outermost-fair strategy is normalizing and the system is WN
by assumption, the reduction ends in a normal form. Contradiction.

Remark 5. Weak normalization cannot be relaxed from system to term level, as
witnessed by the weakly normalizing but cyclic term f(a) in the orthogonal (but
not WN) TRS {f(x)→ b, a→ a}.
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5 Outermost-Fair Rewriting

Normalization of SF is proved by a reduction to normalization of outermost-
fair rewriting. This section is concerned with normalization of outermost-fair
rewriting; it does not contain new results.

A rewrite sequence is outermost-fair if every outermost redex is eventually
contracted. For instance, in Example 5 the rewrite sequence h(g(a, c), c) →
h(g(a, c), c) → . . . is not outermost-fair because it is unfair to the outermost
redex a. The rewrite sequence j(h(h(x)), g(a)) → j(h(h(x)), g(a)) → . . . of Ex-
ample 6 is not outermost-fair because it is unfair to the outermost redex h(h(x)).

O’Donnell [12] shows that outermost-fair rewriting is normalizing for almost
orthogonal TRSs. Van Oostrom [13] extends this in two directions: from first-
order to higher-order, and from almost orthogonal to weakly orthogonal.

Theorem 7 ([13]). Outermost-fair strategies are normalizing for HRSs that
are fully extended and weakly orthogonal.

We collect some observations concerning the limitations of possible extensions.

Remark 6.

(i) In case rewrite rules with arbitrary overlapping patterns are allowed, then
outermost-fair rewriting is not necessarily normalizing. Consider for in-
stance the TRS from [13] defined by {a → b, f(a)→ f(a)}. The term f(a)
can be reduced to the normal form f(b), but the outermost-fair reduction
f(a)→ f(a)→ . . . does not reach a normal form.

(ii) If non-fully-extended rewrite rules are allowed, then outermost-fair rewrit-
ing is not necessarily normalizing. Consider for example the HRS defined
by {f(λx. z) → a, g(x) → a, h(x) → h(x)}. The term f(λx. h(g(x))) has a
normal form: f(λx. h(g(x))) → f(λx. h(a)) → a. However, the outermost-
fair reduction f(λx. h(g(x))) → f(λx. h(g(x))) → . . . contracting h-redexes
does not reach the normal form. The reason is that the outermost f -redex
is created only by contraction of the non-outermost g-redex.

(iii) Outermost-fair does not imply cofinal. Consider for instance the TRS de-
fined by {f(x) → f(x), a → b}. The outermost-fair reduction f(a) →
f(a) → f(a) → . . . is not cofinal because the term f(b) (which is a reduct
of f(a)) cannot be reduced to a f(a).

(iv) In [13] also head-normalization is considered. Using the proof method of
Theorem 7, it is shown that outermost-fair strategies are head-normalizing
for HRSs that are fully extended and almost orthogonal. Surprisingly, this
cannot be extended to the weakly orthogonal case.

6 Church-Rosser Strategies

In a research seminar in 1975 with as outcome the set of notes [4], the question
was raised whether there exists a computable one-step Church-Rosser strategy
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for the λ-calculus? Here a strategy was defined in the classical sense, so as a
functional strategy, and the notion of a (functional) CR-strategy was defined as
in Definition 6. As far as we know, the question above is still unsolved. In [5]
some partial results were obtained.

Church-Rosser strategies are important for the following reason, stated in
Barendregt [3, Lemma 13.1.4] (the assumption of confluence is superfluous there;
it follows from the assumption of a CR-strategy).

Theorem 8 ([3]). Let F be a one-step or many-step functional strategy for the
ARS A. Then:

F is a CR-strategy ⇒ F is cofinal ⇒ F is normalizing.

Proof. The second implication is a special case of Proposition 1. We now prove
the first implication. So suppose F is a CR-strategy for A = (A, Φ, source, target)
and let a ∈ A. We claim that the reduction a → F(a) → F2(a) → . . . (in case
F is a one-step strategy) or a →→ F(a) →→ F2(a) →→ . . . (in case F is a many-
step strategy) is cofinal in G(a, A). Indeed, if b ∈ G(a, A), then a =A b, so since
F ∈ CR, the trails F(a), F2(a), F3(a), . . . and F(b), F2(b), F3(b), . . . will intersect.
This shows that F is a cofinal strategy.

Theorem 9 ([5]). There exists a computable many-step CR-strategy for the
lambda-calculus.

One of the main problems in the proof of Theorem 9 is to avoid that the CR-
strategy F to be defined, falls in the trap of a double F-cycle which is linked, see
Figure 6.

Suppose there are two different F-cycles C1 and C2 containing points M1 and
M2 such that M1 =R M2 (that is, M1 and M2 are convertible in R).

Then we are in a contradictory situation: F cannot be a CR-strategy, because
the F-trails for M1 and M2 will keep cycling without ever intersecting.

An effective many-step CR strategy. We now show that under far more general
circumstances a computable many-step CR-strategy exists.

Fig. 6. Linked cycles
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Definition 9. An effective ARS is an ARS A with an injective computable func-
tion # from objects to natural numbers, and where the reduction relation is com-
putable.

So if A is Church–Rosser, we can compute a common reduct for any given finite
set of convertible objects. Effective ARSs occur frequently, e.g. λ-calculus, or CL,
or any TRS or HRS based on a finite signature and with a finite set of reduction
rules. We will identify an object a with its corresponding natural number #a,
and with →n the restriction of the reduction relation → of A to objects less
than or equal to n is denoted. We show that if such an effective ARS → has
the Church–Rosser property, then it has an effective many-step Church–Rosser
strategy.

The core of our strategy is constituted by the following procedure which, for
a given equivalence class of terms less than a given bound n, attempts to find a
common reduct greater than that bound. Formally, for an object a and bound
n with #a ≤ n the object an is defined to be a common reduct of all (finitely
many!) objects which are →n-convertible to a, such that that common reduct

(i) is greater than n, or else
(ii) is the greatest object of a strongly connected component of →n.

Here ‘strongly connected’ means that every pair of objects is related by n.
Note that by effectiveness of the ARS and the Church–Rosser property it is easy
to turn the construction of a reduct a′ common to the equivalence class, into
a deterministic procedure. Next, by deterministically searching from a′, going
through the finitely many objects in the equivalence class, we will find a unique
common reduct greater than n if it exists. Otherwise, the second item applies and
one notes that the strongly connected component, and hence the common reduct
computed, is unique by the Church–Rosser property (the strongly connected
component may consist of a single object; a normal form).

The idea is then to repeat this procedure. But using what bounds? Using the
number of the object itself as bound, i.e. from a compute a#a, may fail:

. . . . . .0′

0

1′

1

2′

2

3′

3

4′

4

5′

5

Fig. 7. Out-of-sync

Example 7. Consider the ARS of Figure 7, with the numbering # defined by
#i = 2i and #i′ = 2i + 1. Then 0′#0′ = 0′1 yields 2′ (a common reduct of 0 and
0′ and greater than both), 2′#2′ = 2′5 yields 4′, . . . whereas 1′#1′ yields 3′, 3′#3′

yields 5′, etc.. A common reduct of 0′ and 1′ will never be reached.

One could think of the problem as arising from each object determining its
own ‘clock’ and these staying ‘out-of-sync’ forever. To avoid this phenomenon,
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we inductively construct a (monotonically increasing) sequence of bounds n(i),
which one can think of as the ‘ticks of a global clock’.

– n(0) = 0;
– n(i + 1) is the maximum of n(i) + 1 and all objects occurring in the con-

struction of the common reducts an(i), for a such that #a ≤ n(i).

Now define CR(a) = an(i), with i least such that #a ≤ n(i). Per construction
a n(i+1) CR(a), and if the first item applies n(i) < #CR(a) ≤ n(i + 1), or else
CR(a) is the greatest object of a strongly connected component.

Example 8. Consider the ARS of Figure 7 with the numbering # of Example 7.

– n(0) = 0,
– n(1) = 1, the number of 0′, a (common) reduct of 0 greater than 0,
– n(2) = 5, the number of 2′, a common reduct of 0 and 0′,
– n(3) = 9, the number of 4′, a common reduct of 0, . . . , 2′,
– n(4) = 13, . . .

Thus CR(0′) = 0′1 = 2′ and CR(2′) = 2′5 = 4′ which is the same object as
CR(1′) = 1′5 = 4′ (since 2′ and 1′ are convertible within →5), as desired.

Remark 7. ‘Ticks’ of the ‘global clock’ need not have ‘equal duration’. This can
be seen by considering the multiplication ARS having positive natural numbers
as objects (having themselves as number) and multiplication by a number as
steps. Then n(i+1) will be, for i ≥ 3, the least common multiple of all numbers
up to n(i). Thus, in general, the ‘duration’ of the ‘ticks’ grows very fast.

Theorem 10. CR is an effective many-step Church–Rosser strategy.

Proof. That CR is an effective many-step strategy is clear from the above. To
show it is a Church–Rosser strategy suppose a conversion between a and b exists,
and let n(i) bound the largest object in this conversion. By the above, if the first
item always applies, then a n(i) CR

k(a) and b n(i) CR
k′

(b) for some k and k′,
and since a and b were assumed to be convertible within→n(i), so are CR

k(a) and
CR

k′
(b) and we conclude per construction of CR that CR

k+1(a) = CR
k′+1(b).

Otherwise, either sequence reaches the greatest object of some strongly con-
nected component, which eventually will be reached by the other sequence of
steps as well.

Remark 8. The strategy CR only avoids cycles which do have ‘an exit’; a cycle
without an exit (a strongly connected component) need not be avoided as it will
be a common reduct (the unique sink of its connected component) due to the
Church–Rosser property.

As a corollary of Theorem 10 we also have a computable cofinal and normaliz-
ing many-step strategy for this class of systems. Kennaway’s theorem delivers a
computable normalizing one-step strategy for the sub-class of almost orthogonal
fully extended combinatory reduction systems (CRSs).
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7 Cofinal Strategies

Using that CR-strategies are a fortiori cofinal, we have already some corollaries
about the existence of cofinal strategies from the previous sections.

What we do not have as a corollary is the following noteworthy theorem:

Theorem 11 ([14]). There exists a computable cofinal one-step strategy for
Combinatory Logic.

Also for CL, the question whether there is a computable one-step CR-strategy
seems to be open.

In [15], Statman’s strategy is given and shown to be cofinal in the setting of
orthogonal TRSs. As remarked there, an extension to the higher-order case is not
immediate, because the proof of cofinality essentially uses the fact that residuals
of parallel redexes remain parallel, which is not true for the higher-order case.
An extension to the weakly orthogonal case seems possible.

8 Concluding Remarks

The reduction strategies studied here are memory-free, or history-free. It will be
interesting to study strategies with some form of memory. An abstract initial
approach to add memory is described in [15, p.480, Definition 9.1.6], there called
‘history-aware’.
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A Proof of Modularity of Acyclicity

In this appendix we give a proof of Theorem 5 above. To that end, we first
establish a lemma on standard reductions which is interesting in its own right.

Lemma 1 (Standard Prefix). In an orthogonal TRS, the collection of stan-
dard reductions ending in a head step, is totally ordered by the prefix relation.

Proof. In this proof we freely make use of Huet and Lévy’s theory of stan-
dard/external reductions, for which we refer the reader to Sections 8.5 and 9.2.3
of [15].

First note that any standard reduction ending in a head step can be uniquely
decomposed into a number of standard reductions such that only their final step
is a head step. Thus to prove the lemma, it suffices to show that for any term there
is at most one reduction of the latter type. We claim that a standard reduction
of which only the final step is a head step is in fact an external reduction. The
result then follows since supposing ρ and θ would be distinct such reductions
from t, we may assume w.l.o.g. that they already differ in their first steps, say φ
and ψ, and by totality of the textual order, we may assume w.l.o.g. that φ is to
the left of ψ. Therefore, by externality of φ and standardness of θ, φ must have
a unique residual up to the final step of θ. But that final step is a head step, so
clearly it nests the residual of φ, contradicting externality of φ.

http://web.mac.com/janwillemklop/iWeb/Site/Bibliography.html
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We prove the claim that any standard reduction of which only the final step is
a head step, is an external reduction by induction on the lengh of the reduction.
If the length is 1, it is trivial. Otherwise, we may write the reduction as φ · ρ for
some step φ. Since any suffix of a standard reduction is standard, the induction
hypothesis yields that ρ is an external reduction.

For a proof by contradiction, suppose that φ contracting a redex-pattern at
position p were not external. That is, a reduction θ co-initial to ρ would exist,
consisting of steps disjoint from p and ending in a term allowing a step ψ at
position q nesting p. By standardness of φ · ρ, the position p is in the redex-
pattern of the first step above p in ρ (if any). As ρ ends in a head step such a
step indeed exists, say it is φ′ at position p′ above p, and let ρ′ be the prefix of
ρ up to φ′.

Now consider the projections θ of θ over ρ′, and ρ′ of ρ′ over θ. Since by
construction neither θ nor ρ′ contracts redex-patterns on the path from the root
to p, neither do their projections, hence the common reduct contains unique
residuals of both ψ after ρ′ and of φ′ after θ, respectively at positions q and p′

above p. Since the positions above p are totally ordered by the prefix relation,
either of q and p′ is above the other. We prove that neither is possible.

If q is properly above p′, then the reduction θ disjoint from p′ and ending
in a term containing a redex-pattern nesting p′, shows that φ′ is not external,
contradicting the induction hypothesis. If p′ is above q, then since q is above p
and the redex-pattern at p′ overlaps p, the redex-patterns of φ′ and ψ must have
overlap in the common reduct of θ and ρ′, contradicting orthogonality. ��

Remark 9. Although the lemma and its proof go through for higher-order rewrit-
ing systems, we have refrained from stating these since the next theorem doesn’t
generalise to the higher-order case (the result fails as shown in this paper, and
its proof fails in it being based on the notion of rank).

Theorem 12. Acyclicity is modular for orthogonal TRSs.

Proof. In this proof we freely make use of the notions of modularity and tracing,
for which we refer the reader to Sections 5.7.1 and 8.6.1 of [15].

Let Rb - Rw be the disjoint union of the orthogonal TRSs Rb and Rw. To
prove that acyclicity is a modular property is to prove that the underlying rewrite
system→Rb�Rw , which we will abbreviate to→, is acyclic if both→Rb

and→Rw

are. For a proof by contradiction, assume that→Rb�Rw would allow a non-empty
cycle σ on some term t, which we may w.l.o.g. assume to be of minimal rank.
Since the rewrite systems →Rb

and →Rw are acyclic by assumption, the rank
of t must be positive, say it is n + 1. By minimality, at least a single step in σ
must contract a redex-pattern in the top layer. Finally, w.l.o.g. we may assume
t to have a minimal number, say m + 1, of principal subterms of maximal rank,
i.e. of rank n.

Since rewriting does not increase the rank, the fact that σ is a cycle entails
that the rank of all the terms along σ must be n + 1, so none of them has a
principal subterm of rank greater than n. Now, let p be the vector of positions
of principal subterms of maximal rank in t. We claim that for some index i
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and some positive k, pi is its own origin when tracing pi back along the k-fold
repetition σk of σ. The claim holds true by the Pigeon Hole Principle and the
fact that a principal subterm of maximal rank has another such subterm as
origin.2 Let s be the principal subterm of maximal rank at the position pi given
by the claim. We show that from t we can obtain a term t′ which also allows
a non-empty cycle but has at most m principal subterms of rank n, yielding a
contradiction. The term t′ is obtained from t by replacing a number of principal
subterms, the subterm s at position pi inclusive, by a term s′ the rank of which
is less than that of s.

The replacement term s′ is defined as follows. If s allows some reduction
having a destructive step in its top layer, then as standardisation preserves this
and a destructive step in the top layer is a head step, the Standard Prefix Lemma
yields some standard reduction ρ from s ending in a destructive step, which is
least among such in the prefix order, and we let s′ be the target of ρ. Otherwise,
we let s′ be a fresh variable. Either way, the rank of s′ is less than the rank of s.

To see which principal subterms, other than s at position pi, of t are to be
replaced by s′, we proceed as follows. Consider tracing pi forward along an
infinite repetition of σk, where we only let a position trace as long as it is
the position of a principal subterm.3 Then we let p′ be the collection of all
descendants which occur in t after some repetititon of σk, and let t′ be obtained
from t by replacing all subterms at positions in p′ by s′. Note that by the above,
pi itself is among the p′, and that by construction the subterms of t at positions
in p′ are reachable from s.

Next, we show the non-empty cycle σk on t can be simulated by a non-empty
cycle σ′ on t′, by simulating each step φ : u → v by a reduction φ′ : u′  v′

depending on the relative positions of the redex-pattern contracted in φ and the
(pairwise disjoint) descendants of p′ in u. The invariant is that u′ is obtained
from u by replacing all subterms at positions of descendants of p′ by s′.

– If φ contracts a redex-pattern outside, i.e. in the context of, the descendants
of p′ in u, then we let φ′ : u′ → v′ be obtained by contracting the same
redex-pattern in u′.

– If φ contracts a redex-pattern inside some descendant of p′ and φ is not
destructive at its top layer, then we let φ′ : u′  u′ be the empty reduction.

– If φ is a destructive step at a descendant p of p′, then the subterm v|p
is reachable from s as noted above, hence per construction of s′ and the
Standard Prefix Lemma, there also exists some reduction from s to v|p via
s′, thus using u′ = u′[s′]p we may set φ′ : u′[s′]p  u′[v|p]p.

That σ′ is non-empty follows from the fact that σ contains at least one step in
its top layer, which will be simulated by exactly one step in σ′ according to the
first item of the simulation. To show that σ′ is a cycle, it suffices to show that

2 Note that the claim need not hold when fixing k to 1. For instance, σ might swap
two principal subterms (setting k to 2 then works).

3 Per construction positions trace statically; a redex-pattern overlapping one would be
polychrome quod non.
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each position p among p′ in t traces back along σk to some position in that set
again, which is trivial per construction of the set. ��

B Proof of Acyclicity of a PRS

Lemma 2. The PRS consisting of the following rule is acyclic:

f(xyz.Z(x, y, z), W, V )→ Z(W, Z(V, W, f(xyz.Z(x, y, z), W, V )), V )

Proof. By contradiction. To that end, suppose a non-empty cycle σ on t were to
exist. W.l.o.g. we may assume such a t to be of minimal size among all terms
admitting a non-empty cycle. Moreover, we may assume by the Standardisation
Theorem for left-linear PRSs, that σ is standard.

We will employ the notion of gripping path due to Melliès. Say a position of
an f -symbol in a term grips any position of an f -symbol which has a variable
bound by the binders of the former, below it.

Note that a position only can grip positions inside its first argument, as only
that argument has (three) binders. For instance, if we were to have a term
f1(xyz.f2(x′y′z′.a, f3(x′′y′′z′′.a, x, a), a, a), a, f4(x′y′z′.a, a, a)), where we have
labelled the f -symbols for easy reference, then f1 grips both f2 and f3 as both
contain the variable x bound by f1. Note that f2 does not grip f3.

Then a gripping path is a path w.r.t.. the gripping relation; in the example
term there are just two non-trivial paths f1f2 and f1f3. Note that gripping
paths are finite since successive positions are properly ordered by prefix. The
property to be exploited is that gripping paths are preserved under taking their
(position-wise) origin along any rewrite step, where we take as origin/descendant
relation the usual (static) one [15], except that as origin of (all copies of) the
f displayed in the right-hand side the head-f of the left-hand side is taken.
The point is that if the path in the target of a step has some position below
the contracted redex—which is the only interesting case—then the first such
must either be the position of the head-symbol of the copy of the redex, or
be in one of the copies of (the terms substituted for) the meta-variables in the
rhs. In either case, the path must proceed completely inside that copy, by the
variable convention. But then a corresponding path exists in the source of the
step through the corresponding copy.

Now consider the origin of an arbitrary gripping path from the root of t
along σ. This origin is again a gripping path in t by the above and by σ being
a cycle. Distinguish cases depending on whether its first position, say p, is on
some gripping path from the root of t or not.

If it is not, then consider the position q which is closest to the root and above
p such that it is not on some gripping path from the root. Per construction, the
subterm headed by q, say t′, contains no variable bound by an f -symbol above
it. Since p descends, also per construction, to the root of t along σ which was
assumed to be standard, it follows that t reduces to t′ somewhere along σ. Thus
there would be a cylce on t′ as well, contradicting minimality of t.

If it is, then a further case distinction is made depending on whether p is itself
the root or it isn’t.
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If p is not the root, a contradiction is obtained since then for any gripping
path from the root in t, one obtains a longer such path by prefixing its origin
along σ by the (non-empty) gripping path from the root to p.

If p is the root, then first note that by the minimality assumption for t, σ
must contain some head step. By standardness and the shape of the lhs—which
is a pattern which cannot be created—also the first step of σ must be a head
step, i.e.

σ : f([xyz]t′, s, u)→ t′[x, y, z := s, t′[x, y, z :=u, s, t], u]  f([xyz]t′, s, u)

and the root descends to the head f -symbol of a fresh copy of t in the rhs. Both
y and z must occur in t′ otherwise t would be erased. Therefore. by reasoning as
above, the (instantiated) copies of t′ above the f -symbol must be collapsable to
their second respectively third arguments, depending on the respective substitu-
tions s and u for its first argument. However, neither s nor u contains a variable
bound outside it, and thus a collapsing reduction from t′ could not depend on
them. Contradiction. ��
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Abstract. Equational reasoning in Coq is not straightforward. For a
few years now there has been an ongoing research process towards adding
rewriting to Coq. However, there are many research problems on this way.
In this paper we give a coherent view of rewriting in Coq, we describe
what is already done and what remains to be done.

We discuss such issues as strong normalization, confluence, logical
consistency, completeness, modularity and extraction.

1 Introduction

Large part of research in modern theoretical computer science is concerned with
formalizing mathematical reasoning. On one hand various formal calculi are
being developed which model mathematical notions and proofs. On the other
hand computer programs are written which implement these formalisms together
with tools which help the users formalize and solve their mathematical problems.

In this paper we concentrate on Coq [17], a proof assistant based on type
theory and the Curry-Howard correspondence, which relates formulas to types
and their proofs to terms of these types.

Calculus of constructions. The first version of Coq (which was called CoC at
that time) was designed in the late 80s by Coquand and Huet. It implemented
the calculus of constructions, i.e. the lambda calculus, equipped with a powerful
typing discipline containing polymorphism, dependent types and type construc-
tors. Let us mention one typing rule, conversion, which will be important to us
in the rest of the paper.

E � a : t E � t′ : s
E � a : t′

if t ≈ t′

This rule says that a proof of t is also a proof of any correct formula t′ which is
convertible to t. In the pure calculus of constructions, the convertibility relation
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≈ is only β-equality, which due to normalization and confluence of β-reduction
can be checked automatically. The latter property is also crucial for the decid-
ability of type-checking.

In the calculus of constructions it is possible to define natural numbers, lists,
booleans and other inductive types by using the so-called impredicative encod-
ing. For example, natural numbers can be represented as polymorphic Church
numerals with their type Nat ≡ ∀C : �, C → (C → C) → C. Nevertheless
this coding has some important drawbacks concerning both logical and compu-
tational aspects. It is for example impossible to prove that 0 is different from
1, induction principles, for example on natural numbers, are not provable, and
some trivial functions, like predecessor on natural numbers, cannot be computed
in constant time.

Calculus of inductive constructions. In early 90s Coquand and Paulin proposed
to extend the calculus with new kinds of syntactic objects: inductive defini-
tions introducing a type and its constructors and elimination schemes for that
type [19]. The elimination schemes come together with their reduction rules
called ι-reduction, which extends convertibility. The real novelty in the calculus
of inductive constructions is strong elimination, which allows one to build types
by recursion over inductive types.

Using strong elimination one can show that 0 is different from 1. Other prob-
lems of impredicative encoding of inductive types are now also solved.

The calculus of inductive constructions preserves all essential meta-theoretical
properties of the original system: it is terminating, confluent, logically consistent
and has decidable type-checking [46].

Unfortunately using recursors to write function definitions is not very easy
and the definitions, once written, are not very readable. A solution to these
problems is to replace the elimination schemes by two separate mechanisms: one
for pattern-matching (or case-analysis), and one for constructing well-founded
recursive functions.

Definitions by pattern-matching were added to Martin-Löf’s type theory by
Coquand [18]. Consequently, constants may be defined not only explicitly, by
giving a term, but also implicitly by a set of defining equations of the form
f(u1, . . . un) = e, which must be exhaustive and unambiguous.

An adaptation of the above idea to the context of the calculus of constructions
is due to Christine Paulin and was implemented in Coq in 1994. The problem
of checking unambiguity and exhaustiveness is eliminated by choosing a sim-
ple format of case analysis using the match operator. The simple format was
later extended to more complex patterns in [20]. The recursive definitions are
built using the fixpoint operator fix. Normalization is guaranteed within the
type-checking rule of fix. Every recursive call must operate on arguments that
are structurally smaller than the original ones, i.e. are deconstructed from the
original arguments by a match.

Although quite natural and general enough to encode many interesting
functions, the fix rule with its guard condition causes problems, both at the
practical and the theoretical levels: complicated meta-theory, non-incremental



Towards Rewriting in Coq 115

proof-checking, etc. For these reasons several versions of type annotations were
proposed to hide the guardedness condition in the type system [25,36,26,9,5].
There is a running prototype implemented for the system [5].

In order to simplify writing definitions of functions, several authors consider
direct translation of functional programs to Coq [35,39]. Another possibility is to
include in Coq the style of pattern-matching definitions as proposed by Coquand.
But pattern-matching equations are just a restricted form of rewrite rules.

Rewriting in the calculus of constructions. There is an ongoing research process
aiming at adding rewriting into theorem provers based on type theory and Curry-
Howard Isomorphism such as Coq. Jean-Pierre Jouannaud, who was supervisor
of our PhD theses [15,42], is one of the people who actively pushed this research
on.

Defining functions by rewriting is as simple and elegant as the definitions
by pattern matching, but the user has a possibility to add more rules, that
would otherwise have to be proved as axioms or lemmas in the form of Leibniz
equalities or heterogeneous equalities. Moreover, rules can be ambiguous (their
left-hand sides may overlap) as long as the rewriting system is confluent. By
transforming equalities into rewrite rules, one makes the conversion richer and
therefore proofs shorter and more automatic. Moreover more terms are now
typable, so the calculus becomes more expressive.

As long as conversion is decidable, extending the conversion can be seen as a
means to separate reasoning from computing in a similar manner that is used
in Deduction Modulo [23]: while the proof term must record all deduction steps,
the computation steps can be hidden away in conversion and performed auto-
matically. This could be most helpful when working with axiomatic equational
theories, like e.g. group theory, that can be transformed into confluent and ter-
minating rewriting systems. There exist tools that assist users in performing
such transformations (see e.g. [16]).

In order to maintain conversion and hence type-checking decidable one must
be careful to add only rewrite rules which would not spoil subject reduction,
strong normalization and confluence. The easiest and the most natural way to
preserve subject-reduction is to require that the left- and right-hand sides of a
rule have the same type. More flexible approaches allow for the left- and right-
hand sides that do not need to be well-typed (see discussion about underscore
variables in the next section). Since it is not possible to check automatically
whether a given set of rewrite rules in strongly normalizing, one has to come
up with decidable criteria ensuring strong normalization and flexible enough to
accept most of the known and useful definitions by rewriting. In [1] it is shown
that the calculus of constructions can be safely extended with any terminating
and confluent first-order rewriting system. For the higher-order case, there are
two such criteria: HORPO [42] by the second author and the General Schema [6]
by Frédéric Blanqui. They are both discussed in detail in Section 3. In the paper
of Blanqui, the second problem, confluence, is also discussed.

But ensuring termination and confluence is of course not enough. To trust
theorems proved with the help of a proof assistant based on a formalism one
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needs logical consistency. Without rewriting, consistency is guaranteed for all
developments without axioms. With rewriting, one can show it for all develop-
ments where rewriting systems are complete [10,45]. Practical way of checking
completeness is also provided in [45] and discussed in Section 5.

In this paper we give a general vision of rewriting in Coq, how we think it will
look and feel. We particularly care to maintain the important characteristics of
Coq, such as decidable conversion and type-checking, interactive proof develop-
ment, canonicity of inductive types, logical consistency etc. At the same time
we aim to be able to express by rewriting the elimination schemes for inductive
types and definitions by case-analysis and therefore to drop ι-reduction from the
system.

2 Rewriting — Look and Feel

Let us imagine a future version of Coq with rewriting, where definitions by
rewriting will be entered just as all other definitions:1

Welcome to Coq 10.1

Coq < Symbol + : nat → nat → nat
Rules
| O + y −→ y
| x + O −→ x
| (S x) + y −→ S (x + y)
| x + (S y) −→ S (x + y)
| x + (y + z) −→ (x + y) + z.

The above fragment defines addition on unary natural numbers. This function
is defined by induction on both arguments simultaneously and the last rule
expresses associativity.

Introducing a new definition by rewriting to an environment can be done just
like for inductive definitions.

E � ok E � Rew(Γ ; R) : correct
E; Rew(Γ ; R) � ok

(1)

If the environment E is correct and if the new definition by rewriting is correct,
then we can add it to the environment. The right premise stands for all tests that
have to be performed before environment extension. First, the definition must be
well-formed, e.g. the local environment Γ must contain function symbols only,
their types must be correct etc. Second, the rewriting system must verify the
chosen acceptance condition, which should guarantee subject reduction, strong
normalization and confluence of the system after adding the given definition by
rewriting.

Note that at this point we only require properties that are needed to keep
type-checking decidable. The user is free to add a rewriting system which causes
1 The syntax of the definition by rewriting is inspired by the experimental “recriture”

branch of Coq developed by Frédéric Blanqui.
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inconsistency, just as he is free to add an inconsistent axiom but not a non-
terminating fixpoint definition in the current version of Coq. Consistency of
environments containing definitions by rewriting is a separate issue which is
discussed in Section 5.

Rewrite rules are to be used in the conversion rule, and since the set of avail-
able rules depends on the environment, so does the conversion relation. The
correct version of conversion rule is:

E � a : t E � t′ : s E � t ≈ t′

E � a : t′

Going back to our example, the definition of + is well-typed, confluent and
terminating, so we can assume that it is correct and safely add it to the environ-
ment. Our definition is also complete in the sense that for all pairs of canonical
natural numbers (i.e. made of constructors), their sum computes into a canonical
natural number.

With this definition, + becomes much more useful than the one usually defined
using match and fix. Both lemmas ∀x :nat. 0+x = x and ∀x :nat. x+0 = x can
be proved by λx :nat. refl nat x, where refl is the only constructor of the Leibniz
equality inductive predicate. Since the definition of addition is now symmetric
we do not have to use induction for any of the two lemmas.

By enriching conversion, we also make more terms typable. Hence the logical
language becomes more expressive, especially when dependently typed programs
and their properties are considered.

The most prominent example of this kind is the append function on lists with
length. For the sake of simplicity, let us assume that we have a list of boolean
values.

Inductive nlist : nat → Set :=
| nnil : nlist O
| ncons : bool → forall n:nat, nlist n → nlist (S n).

Symbol append : forall n m:nat, nlist n → nlist m → nlist (n+m).
Rules
| append O m nnil lm −→ lm
| append (S n) m (ncons b1 n ln) lm −→ ncons b1 (n+m) (append n m ln lm)
| append n O ln nnil −→ ln.

Note that without the symmetric + in the conversion, either the first two rules
or the last rule would not be well-typed. Indeed, in the first rule, the type of the
left hand side is nlist (0+m) and the type of the right hand side is nlist m
and in the third rule the corresponding types are respectively nlist (n+0) and
nlist n.

Thanks to the fact that associativity of + is in conversion, one could write
and prove the following equational property of append.

append k (n+m) lk (append n m ln lm)=append (k+n) m (append k n lk ln) lm

The types of both sides are listn ((n+m)+k) and listn (n+(m+k)) respec-
tively, and since standard Leibniz equality requires terms to compare to have
convertible types, associativity of + must be in conversion.
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Rewrite rules can also be used to define higher-order and polymorphic func-
tions, like the map function on polymorphic lists.

Inductive list (A : Set) : Set :=
nil : list A | cons : A → list A → list A.

Symbol map : forall A B:Set, (A → B) → list A → list B
Rules
map A B f (nil A) −→ nil B
map A B f (cons A a l) −→ cons B (f a) (map A B f l).

Even though we consider higher-order rewriting, we think that it is enough
to choose the simple matching modulo α-conversion. Higher-order matching is
useful for example to encode logical languages by higher-order abstract syntax,
but it is not really used in Coq where modeling relies rather on inductive types.

Instead of higher-order matching, one rather needs the possibility to under-
specify some arguments. Consider for example transforming the equation for
associativity of append into a rewrite rule:

append k (n+m) lk (append n m ln lm)
−→ append (k+n) m (append k n lk ln) lm

The (n+m) argument of append is needed there just for the sake of correct type-
checking of the left-hand side, because the type of append n m ln lm is list
(n+m). It has no meaning for actual matching of this rewrite rule against terms,
because in all well-typed terms, the second argument of append is the length of
the fourth argument anyway.

Besides, putting (n+m) in the rewrite rule creates many critical pairs with
+, which cannot be resolved without adding many new rules (either by hand
or through an automatic completion procedure) to make the rewriting system
confluent.

Instead, we could replace (n+m) by a fresh variable (or by an underscore
standing for a “don’t care” variable) and write this rule as:

append k _ lk (append n m ln lm)
−→ append (k+n) m (append k n lk ln) lm

This new rule matches all well-typed terms matched by the old rule, and more.
Moreover, there is no critical pairs between this rule and the rules for + and
the rule becomes left-linear, which is both easier to match and may help with
confluence proof. The downside is that the left-hand side of the rule is not well-
typed anymore which might make the proof of subject reduction harder.

This way of writing left-hand sides of rules was already used by Werner in [46]
to define elimination rules for inductive types, making them orthogonal (the
left-hand sides are of the form Ielim P �f �w (c �x), where P , �f , �w, �x are distinct
variables and c is a constructor of I). In [10], Blanqui gives a precise account of
these omissions using them to make more rewriting rules left-linear. Later, the
authors of [13] show that these redundant subterms can be completely removed
from terms (in a calculus without rewriting however). In [4], a new optimized
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convertibility test algorithm is presented for Coq, which ignores testing equality
of these redundant arguments.

It is also interesting to note that when the second argument of append is a
fresh variable then we may say that this argument is matched modulo conversion
and not syntactically.

3 Strong Normalization

In this section we concentrate on the part of acceptance criterion for rewrite
rules which is supposed to guarantee strong normalization.

The first article about higher-order rewriting in the calculus of constructions
is [2,3], where the authors extend the termination criterion called the General
Schema, originally defined in [28]. This result is further extended in [11] by
adding a powerful mechanism, called the computable closure and further on in
[6,10,8,7,9] where rewriting on types, rewriting modulo AC, extended recursors
and type-based termination are considered.

Another method for proving strong normalization of higher-order rewriting is
the Higher Order Recursive Path Ordering (HORPO). HORPO was originally
presented in [29], in the context of the simply typed lambda calculus. A version
of HORPO for the calculus of constructions was first presented in [41] and its
journal version [43]. An extended and elaborated version of the results can be
found in [42].

The works on HORPO and the General Schema share the approach to rewrit-
ing in the calculus of constructions presented in the previous section. Rewriting
is introduced by rewrite rules on function symbols that are constants added to
the system. Function symbols can have dependent and polymorphic types. In [42]
(HORPO approach) both sides of every rewrite rules must have the same type,
in [6] (General Schema) they are meant to have the same type for any typable
instance of the left-hand side.

In order to have strong normalization, the form of the rules is further re-
stricted: it is required that all meaningful type parameters of the head function
symbol of left-hand sides must be different variables.

Both termination criteria, the General Schema and HORPO, are based on a
well-founded ordering on function symbols, called precedence. Inductive types
are built from type constructors and constructors satisfying some positivity
conditions, and elimination schemes are just function symbols with associated
rewrite rules. It is shown that most elimination schemes can be accepted by the
General Schema and HORPO.

In order to deal with elimination schemes, the structural ordering associated
with inductive definitions is incorporated in both HORPO and General Schema.
They share also the use of computable closure (first used in the context of the
simply-typed λ-calculus [12]), which is a set of terms derived from the left-hand
side by some syntactic reducibility-preserving operations.

While the General Schema consists essentially of the computable closure, its
use in HORPO is just one of the possibilities. Nevertheless, it is not the case that



120 J. Chrząszcz and D. Walukiewicz-Chrząszcz

all object level rules accepted by the General Schema are accepted by HORPO.
Apart from some technical conditions, the reason is mainly hidden in the dif-
ferent approaches to inductive types and constructors; in [6], where the General
Schema is used, every function symbol whose output type is an instance of an
inductive type I is considered as a constructor of I, in [42], where HORPO
is used, the standard vision of constructors as symbols that do not rewrite is
adopted.

In both works, strong normalization is shown using the method of reducibil-
ity candidates. In [42] the proof is done not for a particular rewrite system
accepted by HORPO, but for the whole HORPO itself. In other words, the cal-
culus of constructions is extended with the rewrite relation generated by all valid
HORPO judgments and it is shown that the resulting calculus is strongly nor-
malizing. This implies strong normalization of any set of rewrite rules accepted
by HORPO. In [6] the proof is done for any set of rules accepted by the General
Schema.

An important characteristic of the General Schema is the possibility to define
rewriting rules at the level of types and not only at the level of objects. This kind
of rewriting enables to write, for example large elimination rules for inductive
types.

To deal with type-level rewriting, confluence is needed. For that reason, all
rules in [6] have to be left-linear (see Section 4). Extension to type-level rewriting
for HORPO cannot be shown this way, since HORPO is obviously non confluent.

Practical issues. In order to be suitable for implementation, the termination
criteria must have two important properties: decidability and compatibility with
further extensions of environments.

Both, HORPO and General Schema, are decidable criteria for accepting
rewrite rules. Putting aside the convertibility tests, checking a rewrite rule has
a polynomial complexity.

Environment extension corresponds to rule 1 in Section 2 and accounts for
building one rewriting system on the top of another. Originally proofs of strong
normalizations for both criteria were done for the static setting: signature, prece-
dence on function symbols, and set of rewrite rules were given in advance. But
this can be adapted to the situation where a new set of rewrite rules is de-
fined for symbols from the new signature, and type-checked with the calcu-
lus of construction extended with rewriting coming from all previous rewrite
systems.

Examples. Let us end this section with some examples explaining the condi-
tion about different variables as type parameters of head function symbols of
the left-hand sides and illustrating what more can be done concerning strong
normalization.

The following identity rule for polymorphic map: forall A B:Set, (A →
B) → list A → list B can be accepted neither by HORPO nor by the Gen-
eral Schema:

map C C λx.x l −→ l
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In the General Schema approach rules have to be left-algebraic (cannot contain
abstractions) and this one is not. In HORPO, the condition on type parameters
is not satisfied, as map has the same variable as the first and the second argument.
Nevertheless, it is believed that it cannot break strong normalization.

The following rule for the function symbol J is not accepted either:

Symbol J : forall A B:Set, A → B → A
Rules
J C C a b −→ b

But this time it can be shown that this innocent-looking rule leads to nonter-
mination. This example derives from the one presented by J.-Y. Girard in [27]
and was shown to authors by Christine Paulin (see Chapter 6 in [42] for details
concerning nontermination).

An evident difference between the two rules presented above is that there
exists a well-typed instance of J C a b the type of which is different from
the type of the corresponding instance of b and that it is not possible for map.
Nevertheless HORPO from [42] cannot deal with the rule map C λx.x l −→
l either since it requires both sides of the rules to have the same type.

On the other hand the identity rule for monomorphic mmap : forall A:Set,
(A → A) → list A → list A:

mmap C λx.x l −→ l

satisfies the condition about different type variables. It is accepted by HORPO
and rejected by the General Schema, because it is not left-algebraic.

The next example concerns the heterogeneous equality JMeq.

Inductive JMeq (A:Set)(a:A) : forall B:Set, B → Set :=
JMeq refl : JMeq A a A a.

The standard elimination scheme for this rule (JMeq std) does not satisfy the
condition about different type parameters and hence is rejected by HORPO.
But it is known to be terminating already from the works on CIC (see [46] and
also [7]).

Symbol JMeq_std : forall (A:Set)(a:A)(P:(B:Set)B → Set),
P A a → forall (B:Set)(b:B), JMeq A a B b → P B b

Rules
JMeq_std A a P h A a (JMeq refl A a) −→ h

However, its nonstandard (and more useful) elimination scheme JMeq nstd sat-
isfies the condition on type parameters and can be shown terminating by both
HORPO and the General Schema.

Symbol JMeq_nstd : forall (A:Set)(a:A)(P:A → Set),
P a → forall (b:A), JMeq A a A b → P b

Rules
JMeq_nstd A a P h a (JMeq refl A a) −→ h
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4 Confluence

Confluence of the calculus of constructions with rewriting is less studied than
strong normalization and it is known for two kinds of situations. First, if strong
normalization can be established without confluence (it is the case for the object-
level rewriting, see [6,42]), then confluence is a consequence of the strong nor-
malization and local confluence, i.e. joinability of critical pairs. If confluence
is needed before the strong normalization proof then the result of [33] can be
used. It states that the sum of beta reduction with confluent left-linear and left-
algebraic rewrite system R is confluent. Confluence of R (without beta reduction)
is usually simpler to achieve; in [6] it is shown for every R being a combination
of a first-order system that is strongly normalizing and nonduplicating with a
set of first- and higher-order rules satisfying the General Schema and such that
critical pairs of R are joinable.

Left-linearity may seem an important restriction when using dependent types,
but it is not really the case. In fact, nonlinearities due to typing can be avoided
using underscore variables, like described in Section 2. Nevertheless, if one aims
to deal with type-level rewriting, both type- and object-level rules have to be
left-linear and left-algebraic. In order to lift this restriction one should probably
consider a simultaneous proof of strong normalization and confluence.

5 Logical Consistency, Completeness of Definitions and
Inductive Consequences

Adding arbitrary rewrite rules to the calculus of constructions may easily lead
to logical inconsistency, just like adding arbitrary axioms. It is of course possible
to put the responsibility on the user, but it is contrary to the current Coq policy
to guarantee consistency of a large class of developments, namely those which
do not contain axioms. Since we plan on using rewriting as a principal means of
defining functions, we have to come up with a large decidable class of rewriting
systems that are guaranteed not to violate consistency.

Logical consistency for the calculus of constructions with rewriting was first
studied in [10]. It was shown under an assumption that for every symbol f defined
by rewriting, f(t1, . . . , tn) is reducible if t1 . . . tn are terms in normal form in the
environment consisting of one type variable. But there were no details how to
satisfy the assumption of the consistency lemma.

In [45] it is shown that logical consistency is an easy consequence of canonicity,
which can be proved from completeness of definitions by rewriting (discussed
below), provided that termination and confluence are proved first. More precisely,
it can be shown that in every environment consisting only of inductive definitions
and complete definitions by rewriting, every term of an inductive type can be
reduced to a canonical form. This, by an easy analysis of normal forms, implies
that there is no proof of Πx :∗.x.

Completeness of definitions by rewriting. Informally, a definition by rewriting
of a function symbol f is complete if the goal f(x1, . . . , xn) is covered, which
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means that all its canonical instances are head-reducible. In [45] the definition
of completeness is precised in such a way that it guarantees logical consistency
and there exist a sound and terminating algorithm for checking completeness of
definitions.

If we adopt the view that properties of a rewriting system should be checked
when it is being introduced to an environment (see typing rule 1 in Section 2),
then completeness of the function symbol f has to be checked much earlier than
it is used: one uses it in an environment E = E1; Rew(f, R); E2 but it has to
be checked when f is added to the environment, i.e. in the environment E1. It
follows that completeness checking has to account for environment extension and
can be performed only with respect to arguments of such types which guarantee
that their set of normal inhabitants would not change in the future. This is the
case for inductive types whose normal inhabitants are always terms built from
constructors.

In [45] there is also an algorithm for checking completeness. It checks that
a goal is covered using successive splitting, i.e. replacement of variables of in-
ductive types by constructor patterns. In presence of dependent types not all
constructors can be put in every place. The head function below is completely
defined since nnil can never be of type nlist (S n).

Symbol head : forall (n:nat) nlist (S n) → bool
Rules

head n (ncons b n l) −→ b

The algorithm is necessarily incomplete, since in the presence of dependent
types emptiness of types trivially reduces to completeness and the former is
undecidable. The algorithm accepts all definitions that follow dependent pattern
matching schemes presented by Coquand and studied by McBride in his PhD
thesis. Extended with the second run, it deals with all usual definitions by case
analysis in Coq. It also accepts many definitions by rewriting containing rules
which depart from standard pattern matching.

The rewriting systems for +, append, map, JMeq std, JMeq nstd presented
earlier can be easily proved complete by the algorithm. This is also true for
Streicher’s axiom K:

Symbol K : forall (A:Set) (a:A) (P:eq A a a → Set),
P (refl A a) → forall p: eq A a a, P p

Rules
K A a P h (refl A a) −→ h

Another method for checking completeness of pattern matching equations
in the Calculus of Constructions is presented in [34]. It consists in computing
approximations of inductive types and is not based on splitting; for that reason
it accepts some of the examples not accepted by the algorithm described above.
Fortunately, it seems that the approximation method can be easily added to
the algorithm from [45] as another phase, if the original version fails to show
completeness.
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Inductive consequences. During the completeness check of a definition by rewrit-
ing only some of the rules are used; usually they correspond to the pattern
matching definition of a given symbol. An interesting question is how much the
rules outside this part extend the conversion.

For first-order rewriting it is known that these rules are inductive consequences
of the pattern matching ones, i.e. all their canonical instances are satisfied as
equalities (see e.g. Theorem 7.6.5 in [40]). It is also true for higher-order and de-
pendent rewriting in the calculus of constructions as long as there is no rewriting
under a binder in the rewrite steps needed to join the critical pairs [44]. For ex-
ample, the identity rule for the monomorphic mmap function from Section 3 is
clearly an inductive consequence of the basic rules for nil and cons.

Unfortunately, the problem is more difficult for higher-order rules over induc-
tive types with functional arguments. The defined function symbol might get
under a binder and might be applied to a bound variable instead of a canonical
term on which it is always reducible. Here is an example:

Inductive ord : Set :=
o : ord

| s : ord → ord
| lim : (nat → ord) → ord.

Rewriting n2o : nat → ord
Rules

n2o O −→ o
n2o (S x) −→ S (n2o x)

Rewriting id : ord → ord
Rules

id o −→ o
id (s x) −→ s (id x)
id (lim f) −→ lim (fun n => id (f n))

id (id x) −→ id x

The last rewriting system is confluent (unlike the one in which the last rule is
replaced with id x −→ x because the critical pair for x=(lim f) needs eta to be
joinable). Now, for l = id (id x), r =id x, σ = {x �→ lim (fun n ⇒ n2o n)}
one has:

lσ = id (id (lim (fun n ⇒ n2o n)))
−→ id (lim (fun n’ ⇒ id ((fun n ⇒ n2o n) n’)))
−→ id (lim (fun n’ ⇒ id (n2o n’)))
−→ lim (fun n’’ ⇒ id ((fun n’ ⇒ id (n2o n’)) n’’))
−→ lim (fun n’’ ⇒ id (id (n2o n’’)))

rσ = id (lim (fun n ⇒ n2o n))
−→ lim (fun n’ ⇒ id ((fun n ⇒ n2o n) n’))
−→ lim (fun n’ ⇒ id (n2o n’))

and they are not equal.
It seems that in case when critical pairs are joinable using rewriting under a

binder, rules that are outside definitional part can also be considered as inductive
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consequences of the definition, but then the conversion needs to be functionally
extensional (similarly to [34]) and some special care should be payed to the
contexts under which rewriting occurs.

Summarizing, in many rewriting systems, especially simple ones, defining func-
tions over non-functional inductive types, additional rules are inductive conse-
quences of the complete subsystem. In other rewriting systems, even if we are
not sure that this is the case, by [10,45], a terminating, confluent and complete
rewriting system cannot lead to inconsistency.

In practice it would be best to have two different keywords for complete and
“not necessarily complete” definitions by rewriting. For example, the keyword
Complete Symbol would mean that the set of rules must be checked for com-
pleteness by Coq and rejected if its completeness cannot be proved. The keyword
Symbol (without Complete) would not incur any completeness checking and the
user would understand that the responsibility for consistency in entirely in his
hands.

6 Modularity

A very important issue in an interactive system like Coq is modularity. Coq
developments are usually composed of many files and use the standard library
or some libraries developed by third parties.

Once the given library file is checked, Coq metatheory guarantees that the
compiled library can be read and included in any development without risking
undecidability or logical inconsistency (the latter provided that there are no
axioms in the library or the development).

In order to retain this status once rewriting is added to Coq one must be very
careful to ensure good modularity properties on the rewriting systems included
in library files.

In particular it should be impossible to define a rewrite rule f(x) −→ g(x)
in one file and g(x) −→ f(x) in another one, because loading these two files
together would break strong normalization. Although it is possible to design
a new version of Coq in such a way that the whole set of rewriting rules is
rechecked every time a new library is loaded, it would be very time consuming
and therefore it is not a good solution.

Instead, the acceptance criteria for rewrite rules should take modularity into
consideration. In other words, the following lemma should hold even if there are
some definitions by rewriting in E1, E2 and/or J :

For all judgments J , if E; E1 � J and E; E2 � ok then E; E1; E2 � J .

In practice, many modularity problems are avoided by allowing only rewrite
definitions Rew(Γ, R) whose head symbols of the left hand sides of rules come
from Γ . It is the case in all examples given in Section 2.

The module system. Additional modularity requirements for definitions by rewrit-
ing come from the module system. The Coq module system [14,15] was designed
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with adding rewriting in mind. In particular, even though more theoretically ad-
vanced module systems existed at the time it was implemented (first-class mod-
ules, anonymous modules [38,21,22]), a simple named version was chosen, similar
to [30], where each module construct must be given a name before being used in
terms. Thanks to that, existing syntactic acceptance criteria (see Section 3) can
be easily adapted to modules.

The module language resembles a simply typed lambda calculus with records
and record types. A very important feature is module subtyping, with its sub-
sumption rule permitting to give a less precise type to a module.

E � M : T E � T <: T ′

E � M : T ′

This rule is useful in two cases. First, it permits to hide some implementation
details of a module in order to be able to change them in the future without
affecting other parts of the project. Second, it permits to define a functor with
minimal requirements to its arguments and then apply it to a module at hand
with more elements and more precise interface.

Once rewriting is added to Coq, definitions by rewriting will be allowed in
module interfaces and in particular in argument types of functors.

Since functors can be applied to all modules whose interface is a subtype of the
functor argument type, the subtyping on module interfaces has to be extended
to interfaces containing definitions by rewriting.

It is clear that the convertibility properties required by the functor argument
interface must be satisfied by the actual parameter’s interface. Otherwise the
functor result would not be well-typed.

In [15] no other restrictions on “rewriting-subtyping” are imposed. Note how-
ever, that such liberal definition of subtyping implies very strict modularity
properties for the acceptance condition for definitions by rewriting. This means
that the definition by rewriting must be guaranteed not only to be terminating
and confluent in the current environment, but also in an environment, where
some module type is replaced by a subtype. For example consider the following
module type and functor:

Module Type T.
Symbol g : bool → bool
Rules

g true → true.
End T.

Module F(X:T).
Symbol f : bool → nat.
Rules

f true −→ 0
f false −→ 0
f (X.g false) −→ 1.

End F.
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The definition of f inside the functor F is confluent, because no reduction rules
are associated with g false and hence there are no critical pairs. Consider a
possible implementation M of the module type T and the application of F to M.

Module M <: T.
Symbol g : bool → bool
Rules

g true −→ true
g false −→ false.

End M.

Module Z := F M.

Now, the signature of Z is the same as the body of F, but the formal parameter
X is replaced by the actual parameter M. This gives the following set of rules
defining Z.f:

f true −→ 0
f false −→ 0
f (M.g false) −→ 1

which is non-confluent, because on one hand f (M.g false) −→ 1 and on the
other hand f (M.g false) −→ f false −→ 0.

It turns out that in presence of modules and subtyping, rewrite rules where
left-hand sides mentions external symbols whose specification may still be com-
pleted is very dangerous. The easiest way to prevent this danger is to restrict the
left-hand sides of the rewrite rules to contain only the symbols declared by the
given rewrite definition. This is, again, the case in all examples from Section 2.

Such restriction however turns out to be quite severe. Consider for example
defining mathematical functions over natural numbers. It might be a good idea
to add a rule defining how this function behaves for the arguments of the form
(a+b), but since + is not defined at the same time, this is impossible. Since + is
already completely defined it is unlikely to introduce a new definition of + which
would create more critical pairs.

This question, whether it is safe to allow external but completely defined
symbols in left hand sides of rewrite rules, definitely needs to be studied further.

7 Extraction

The possibility to extract executable Ocaml, Haskell or Scheme code from Coq
developments is one of the key features of Coq [37,31,32]. In this section we try to
analyze the impact of introducing rewriting to Coq on the extraction mechanism.

The general problem with rewriting is that it does not immediately correspond
to any mechanism present in functional languages. To extract a definition of a
symbol defined by rewriting it is important to check whether this symbol is
completely defined or not. If it is not, this means that the symbol is like an
axiom and its successful extraction is impossible.

If it is complete then, as we explained in Section 5, its definition can be
divided into two parts. The first part, which is a complete subset containing the
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rules used by the completeness checking procedure, usually consists of pattern
matching rules. The second part is the remaining set of rules which, in most
cases, are inductive consequences of the first part. These rules can also be called
shortcut rules and they are only really important if the function’s arguments are
not ground terms, which is never the case when a functional program is executed.

So it is enough to just translate those rules which have the pattern-matching
form and simply leave out all the others. The resulting definition will include
the complete definition and some of the shortcut rules which have a pattern-
matching form. Other shortcut rules should simply be dropped or they can be
transformed into rewrite rules for optimization, available e.g. in the Glasgow
Haskell Compiler.

For example the definition of + from Section 2 could be extracted to the
following Ocaml code:

(** val plus : nat → nat → nat **)

let rec plus n m =
match n, m with
| O, y → y
| x, O → x
| S x, y → S (plus x y)
| x, S y → S (plus x y);;

The second and fourth lines are not necessary for the completeness of the transla-
tion. However, the second line can speed up the definition if the second argument
is O. Unfortunately, the fourth line is never used, even though it could also speed
the computation up. Indeed, any natural number which does not match the first
and the second rule, does match the third one. The associativity rule for + is not
extracted, as it is not in the pattern-matching form.

The definition of append is extracted in the following way:

(** val append : nat → nat → nlist → nlist → nlist **)

let rec append n m ln lm =
match n, m, ln, lm with

| O, m, Nnil, lm → lm
| (S n0), m, Ncons (b, n0’, n1), lm →

Ncons (b, (plus n0 m), (append n0 m n1 lm))
| n, O, ln, Nnil → ln;;

A smart extraction procedure should also change the order of the second and
third rule, because otherwise one of the first two rules always applies and the
expected speed up from the third rule can never be achieved. Note also, that
an extracted function has the same number of arguments as the original one,
but the dependencies between them are broken. Consequently, while append
is complete in the Coq world, its extracted version contains non-exhaustive
pattern-matching, corresponding to unexpected cases when the list and its de-
clared length do not match. Note however that the same problem it is already
present for the extracted version of definitions by fix and match in the current
Coq.
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8 Conclusions

The goal of this paper was to present our vision of rewriting in Coq and to sum-
marize the results already known in the field. We started from an incremental
character of the calculus of constructions with rewriting, the form of the defi-
nitions by rewriting and matching used to apply rewrite rules to terms. Then
we discussed such issues as strong normalization, confluence, logical consistency,
completeness of definitions by rewriting, modularity and extraction.

We hope that this paper can be a basis for a deeper/more detailed discussion
about rewriting in Coq, its future and its alternative views. Moreover we hope
that it can serve for comparisons with conceptually different extensions of Coq,
for example the one described in [24] aiming at extending Coq with decision
procedures.

Acknowledgements. We would like to thank Paweł Urzyczyn, Frédéric Blanqui
and the anonymous referees for their comments on the first version of our paper.
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Abstract. Superdeduction is a systematic way to extend a deduction system like
the sequent calculus by new deduction rules computed from the user theory. We
show how this could be done in a systematic, correct and complete way. We
prove in detail the strong normalisation of a proof term language that models
appropriately superdeduction. We finaly examplify on several examples, includ-
ing equality and noetherian induction, the usefulness of this approach which is
implemented in the lemuridæ system, written in TOM.

1 Introduction

Our objective is twofold:
– to scale up by an order of magnitude the size of the problems we can deal with;
– to downsize by an order of magnitude the time needed for a given development.

To this end, we started studying a new version of the calculus of constructions in which
user-defined computations expressed by rewrite rules can be made transparent in proof

terms.
Jean-Pierre Jouannaud [Towards Engineering Proofs, 1999]

The design, verification and communication of formal proofs are central in informat-
ics and mathematics. In the later, the notion of proofs has a long and fruitful history
which now becomes even richer with a century of experience in its formalization. In
informatics, formal proofs are in particular essential to formaly assess safety as well
as security properties of digital systems. In this context, proof engineering becomes
crucial and relies on a semi-interactive design where human interaction is unavoidable.
Moreover, to be well designed, proofs have to be well understood and built. As the size
of critical softwares increases dramatically, typically a “simple” automotive cruise con-
trol software consists of more than one hundred thousand lines of code, proof methods
and tools should also scale-up.

This proof engineering process is now mastered with the use of proof assistants like
Coq [The04], Isabelle [Pau94], PVS [ORS92], HOL [HOL93], Mizar [Rud92] and large
libraries of formalised theories ease this task.
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In this context one has to deal with at least two main difficulties. First, proof engi-
neering should scale-up as the theories describing the context become huge and may
consist of thousand of axioms and definitions, some of them being quite sophisti-
cated. Second, the proof assistant needs to provide the user with appropriate ways
to understand and to guide the proof construction. Both concerns are currently tack-
led by making libraries available, by providing specific tactics, tacticals or strategies
(see typically coq.inria.fr), by integration rewriting [BJO02] and decision proce-
dures [NKK02, Alv00, MQP06] safely into the proof assistants, or by interfacing first-
order automated theorem provers with proof assistants like [BHdN02] or like the use of
Zenon in Focal [Pre05].

Indeed these approaches raise the question of structuring the theories of interest. For
instance one would like to identify the subtheory of lists or of naturals to apply specific
decision procedures, e.g. [KRRT06] and of course finding a good modular structure is
one of the first steps in an engineering process.

. . . the role of higher-order rewriting is to design a type theoretic frameworks in which
computation and deduction are integrated by means of higher-order rewrite rules,

while preserving decidability of typing and coherence of the underlying logic . . .
Jean-Pierre Jouannaud [Jou05]

In this context, we have proposed in [BHK07] a foundational framework making
use of three complementary dimensions. First, as pioneered by deduction modulo, the
computational axioms should be identified. Typically the definition of addition on nat-
urals ought to be embedded into a congruence modulo which deduction is performed
[DHK03]. In this case, the deduction rules like the one of natural deduction or of the
sequent calculus are not modified but they are applied modulo a congruence embedding
part of the theory. Second, we are proposing a complementary approach where new de-
duction rules are inferred from part of the theory in a correct, systematic and complete
way. Third, the rest of the theory will be used as the context on which all the standard
and new deduction rules will act, possibly modulo some congruence.

To sum up, a theory is split in three parts Th = Th1 ∪ Th2 ∪ Th3 and instead of
seeking for a proof of Th1 ∪ Th2 ∪ Th3 � ϕ, we are building a proof of Th3 �

+Th2∼Th1
ϕ,

i.e. we use the theory Th3 to prove ϕ using the extended deduction system modulo the
congruence ∼Th1 . We assume that the propositions in Th2 are all proposition rewrite
rules, i.e. are of the form ∀x.(P ⇔ ϕ), where P is atomic.

To ease the presentation of the main ideas, we will not consider in this paper the case
of deduction modulo even if in addition to simplicity it admits unbounded proof size
speed-up [Bur07]. We call superdeduction the new deduction system embedding the
newly generated deduction rules, and the extended entailment relation is denoted �+Th

or simply �+.
Intuitively, a superdeduction rule supplants the folding of an atomic proposition P

by its definition ϕ, as done by Prawitz [Pra65], followed by as much introductions as
possible of the connectives appearing in ϕ. For instance, the axiom

TRANS : ∀x.∀z.(x ≤ z ⇔ ∃y.(x ≤ y ∧ y ≤ z))

coq.inria.fr
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is translated into a left deduction rule by first applying the rules of the classical sequent
calculus to Γ, ∃y.(x ≤ y ∧ y ≤ z) � Δ. Then by collecting the premises and the side
conditions, we get the new deduction rule:

≤TRANSL

Γ, x ≤ y, y ≤ z � Δ

Γ, x ≤ z � Δ
y �∈ FV(Γ ,Δ)

The right rule:

≤TRANSR

Γ � x ≤ y, Δ Γ � y ≤ z, Δ

Γ � x ≤ z, Δ

is similarly obtained by applying deduction rules to Γ � ∃y.(x ≤ y ∧ y ≤ z), Δ.
These new deduction rules are quite natural and translate the usual mathematical

reasoning w.r.t. this axiom. Let us see on a simple example the difference between a
proof in sequent calculus and the corresponding one in the extended deduction system.
The proof that TRANS � a ≤ b ⇒ b ≤ c ⇒ a ≤ c is the following:

⇒R

⇒R

∀L

∀L

∧L

⇒L

∃R

∧R

AX
a ≤ b, b ≤ c � a ≤ b, a ≤ c

AX
a ≤ b, b ≤ c � b ≤ c, a ≤ c

a ≤ b, b ≤ c � a ≤ b ∧ b ≤ c, a ≤ c

a ≤ b, b ≤ c � ∃y.(a ≤ y ∧ y ≤ c), a ≤ c
····

AX
a ≤ c, a ≤ b, b ≤ c � a ≤ c

∃y.(a ≤ y ∧ y ≤ c)⇒ a ≤ c, a ≤ b, b ≤ c � a ≤ c

a ≤ c ⇔ ∃y.(a ≤ y ∧ y ≤ c), a ≤ b, b ≤ c � a ≤ c

∀z.(a ≤ z ⇔ ∃y.(a ≤ y ∧ y ≤ z)), a ≤ b, b ≤ c � a ≤ c

∀x.∀z.(x ≤ z ⇔ ∃y.(x ≤ y ∧ y ≤ z)), a ≤ b, b ≤ c � a ≤ c

∀x.∀z.(x ≤ z ⇔ ∃y.(x ≤ y ∧ y ≤ z)), a ≤ b � b ≤ c ⇒ a ≤ c

∀x.∀z.(x ≤ z ⇔ ∃y.(x ≤ y ∧ y ≤ z)) � a ≤ b ⇒ b ≤ c ⇒ a ≤ c

Using superdeduction, the axiom TRANS has been used to generate the new deduction
rules above and the proof becomes simply:

⇒R

⇒R

≤TRANSR

AX
a ≤ b, b ≤ c � b ≤ c, a ≤ c

AX
a ≤ b, b ≤ c � a ≤ b, a ≤ c

a ≤ b, b ≤ c � a ≤ c

a ≤ b � b ≤ c ⇒ a ≤ c

� a ≤ b ⇒ b ≤ c ⇒ a ≤ c

It is important to notice that these new rules are not just “macros” collapsing a se-
quence of introductions into a single one: they apply to a predicate, not a connector, and
therefore do not solely contain purely logical informations. This therefore raises non
trivial questions solved in [BHK07] and in this paper, like the conditions under which
the system is complete or consistent and sufficient conditions to get cut-elimination.

Superdeduction is based on previous works on supernatural deduction, a deduction
system introduced by Benjamin Wack in [Wac05] and providing a logical interpreta-
tion of the ρ-calculus [CK01, CLW03]. Preliminary presentation of superdeduction for
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the sequent calculus has been given in [Bra06] and the consistency of such systems is
studied in [Hou06]. The superdeduction principle has been presented in [BHK07].

In this context, our contributions are the following:

– We first summarize in the next section the general principle defined in [BHK07]:
a systematic extension of the classical sequent calculus by new deduction rules in-
ferred from the axioms of the theory that are proposition rewrite rules; We prove
in detail that this is correct and complete taking into account permutability prob-
lems; Building on Urban’s proof-term language for the sequent calculus [Urb01],
we present the simple and expressive calculus proposed in [BHK07] that we show
to provide a Curry-Howard-de Bruijn correspondence for superdeduction; Assum-
ing the proposition rewrite system used to extend deduction to be weakly normal-
ising and confluent, we prove in detail that the calculus is strongly normalising
and therefore that the theory is consistent since the superdeduction system has the
cut-elimination property.

– Then, we investigate in Section 3 the consequence of these principles and results
for the foundation of a new generation of proof assistants for which we have a first
downloadable prototype, lemuridæ (rho.loria.fr). In particular we show how
convenient and natural proofs become for instance in higher-order logic, mathemat-
ical induction, equational logic. We also examplify the current limitations set to get
the general results of previous section.

– Finally, we provide in Section 4 the detailed proofs of the results summarized in
Section 2.

2 Super Sequent Calculus

In this section we recall the principles of superdeduction.

AX
Γ, ϕ � ϕ, Δ

CONTRR

Γ � ϕ, ϕ, Δ

Γ � ϕ, Δ
CONTRL

Γ, ϕ, ϕ � Δ

Γ, ϕ � Δ
⊥L

Γ, ⊥ � Δ

∧L

Γ, ϕ1, ϕ2 � Δ

Γ, ϕ1 ∧ ϕ2 � Δ
∧R

Γ � ϕ1, Δ Γ � ϕ2, Δ

Γ � ϕ1 ∧ ϕ2, Δ

R

Γ � 
, Δ

∨L

Γ, ϕ1 � Δ Γ, ϕ2 � Δ

Γ, ϕ1 ∨ ϕ2 � Δ
∨R

Γ � ϕ1, ϕ2, Δ

Γ � ϕ1 ∨ ϕ2, Δ
⇒R

Γ, ϕ1 � ϕ2, Δ

Γ � ϕ1 ⇒ ϕ2, Δ

∀R

Γ � ϕ, Δ

Γ � ∀x.ϕ, Δ
x /∈ FV(Γ, Δ) ∀L

Γ, ϕ[t/x] � Δ

Γ, ∀x.ϕ � Δ
⇒L

Γ � ϕ1, Δ Γ, ϕ2 � Δ

Γ, ϕ1 ⇒ ϕ2 � Δ

∃R

Γ � ϕ[t/x], Δ

Γ � ∃x.ϕ, Δ
∃L

Γ, ϕ � Δ

Γ, ∃x.ϕ � Δ
x /∈ FV(Γ, Δ) CUT

Γ � ϕ, Δ Γ, ϕ � Δ

Γ � Δ

Fig. 1. Classical sequent calculus

As mentioned in the introduction and similarly as in deduction modulo, we focus our
attention to formulæ of the form ∀x.(P ⇔ ϕ) where P is atomic:

rho.loria.fr
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Definition 1 (Propositions rewrite rule). The notation R : P → ϕ denotes the axiom
∀x.(P ⇔ ϕ) where R is a name for it, P is an atomic proposition, ϕ some proposition
and x their free variables.

Notice that P may contain first-order terms and therefore that such an axiom is not just
a definition. For instance, isZero(succ(n))→ ⊥ is a proposition rewrite rule.

For the classical sequent calculus, let us now describe how the computation of the
superdeduction new inference rules is performed.

Definition 2 (Super sequent calculus rules computation). Let Calc be a set of rules
composed by the subset of the sequent calculus deduction rules formed of AX,⊥L,#R,
∨L, ∨R, ∧L, ∧R, ⇒L, ⇒R, ∀L, ∀R, ∃L and ∃R, as well as of the two following rules
#L and ⊥R


L

Γ � Δ

Γ,# � Δ
⊥R

Γ � Δ

Γ � ⊥, Δ

Let R : P → ϕ be a proposition rewrite rule.

1. To get the right rule associated with R, initialise the procedure with the sequent Γ �
ϕ, Δ. Next, apply the rules of Calc until no more open leave remain on which they
can be applied. Then, collect the premises, the side conditions and the conclusion
and replace ϕ by P to obtain the right rule RR.

2. To get the left rule RL associated with R, initialise the procedure with the sequent
Γ, ϕ � Δ. apply the rules of Calc and get the new left rule the same way as for the
right one.

Definition 3 (Super sequent calculus). Given a proposition rewrite systemR, the su-
per sequent calculus associated with R is formed of the rules of classical sequent cal-
culus and the rules built uponR. The sequents in such a system are written Γ �+R Δ.

To ensure good properties of the system, we need to put some restrictions on the axioms
though. Although the deduction rules of the classical sequent calculus propositional
fragment may be applied in any order to reach axioms, the application order of rules
concerning quantifiers is significant. Let us consider the following cases:

∀R

AX

∀L

P (x0) � P (x0)
∀x.P (x) � P (x0)
∀x.P (x) � ∀x.P (x)

∀L

P (t) � ∀x.P (x)
∀x.P (x) � ∀x.P (x)

The left-hand side proof succeeds because the early application of the ∀R rule pro-
vides the appropriate term for instantiating the variable of the proposition present in the
context. On the other hand, the second proof cannot be completed since the ∀R side
condition requires the quantified variable to be substituted for a fresh one. Such a sit-
uation may occur when building the super sequent calculus custom rules and therefore
may break its completeness w.r.t. classical predicate logic. This common permutabil-
ity problem of automated proof search appears here since superdeduction systems are
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in fact embedding a part of compiled automated deduction. Thereby we apply an idea
inspired by focusing techniques [And92, AM99, And01], namely replacing every sub-
formula of ϕ leading to a permutability problem by a fresh predicate symbol parame-
terised by the free variables of the subformula. To formalise this, we first need to recall
the polarity notion:

Definition 4 (Polarity of a subformula). The polarity polϕ(ψ) of ψ in ϕ where ψ is a
subformula occurrence of ϕ is a boolean defined as follows:

– if ϕ = ψ, then polϕ(ψ) = 1;
– if ϕ = ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2, then polϕ(ψ) = polϕ1(ψ) if ψ is a subformula occur-

rence of ϕ1, polϕ2(ψ) otherwise;
– if ϕ = ∀x.ϕ1 or ∃x.ϕ1, then polϕ(ψ) = polϕ1(ψ);
– if ϕ = ϕ1 ⇒ ϕ2, then polϕ(ψ) = ¬polϕ1(ψ) if ψ is a subformula occurrence of

ϕ1, polϕ2(ψ) otherwise.

Definition 5 (Set of permutability problems). A formula ψ is in the set PP (ϕ) of ϕ
permutability problems if there exists ϕ′ a subformula of ϕ such that ψ is a subformula
occurrence of ϕ′ and one of these propositions holds:

– ϕ′ = ∀x.ϕ′
1, ψ = ∀x.ψ′

1 and polϕ′(ψ) = 0
– ϕ′ = ∃x.ϕ′

1, ψ = ∃x.ψ′
1 and polϕ′(ψ) = 0

– ϕ′ = ∀x.ϕ′
1, ψ = ∃x.ψ′

1 and polϕ′(ψ) = 1
– ϕ′ = ∃x.ϕ′

1, ψ = ∀x.ψ′
1 and polϕ′(ψ) = 1

This allows us to define the most appropriate generalisation of a proposition rewrite rule
R : P → ϕ:

Definition 6 (Set of delayed proposition rewrite rules). This is the set:

Dl(R : P → ϕ) = {P → C
[
Q1(x1), . . . , Qn(xn)

]
}
⋃

i=1...n

Dl
(
Qi → ϕi

)

such that:

– C is the largest context in ϕ with no formula in PP (ϕ) such that ϕ = C[ϕ1 . . . ϕn];
– ∀i ∈ {1 . . . n}, xi is the vector of ϕi free variables;
– Q1 . . .Qn are fresh predicate symbols.

As an example, let us consider the proposition rewrite rule defining the natural num-
bers as the set of terms verifying the inductive predicate:

∈N : N(n) → ∀P.(0 ∈ P ⇒ ∀m.(m ∈ P ⇒ s(m) ∈ P )⇒ n ∈ P )

This axiom can be found in [DW05] which introduces an axiomatisation of constructive
arithmetic with rewrite rules only. It uses a simple second-order encoding by expressing
quantification over propositions by quantification over classes; x ∈ P should therefore
be read as P (x). The delayed set Dl(∈N) of proposition rewrite rules derived from the
rules above is:

∈N : N(n) → ∀P.(0 ∈ P ⇒ H(P )⇒ n ∈ P )
hered : H(P ) → ∀m.(m ∈ P ⇒ s(m) ∈ P )
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Let us notice that the proposition H(P ) revealed by the elimination of permutability
problems expresses heredity, a well-known notion. Focussing on parts of the proposi-
tions which raise some non-trivial choice at some phase on the proof has been naturally
done by mathematicians. Then we obtain the following deduction rules for the natural
numbers definition:

∈NL

Γ �+ 0 ∈ P, Δ Γ �+ H(P ), Δ Γ, n ∈ P �+ Δ

Γ, N(n) �+ Δ

∈NR

0 ∈ P, H(P ) �+ n ∈ P, Δ

Γ �+
N(n), Δ

P �∈ FV(Γ, Δ)

The left rule translates exactly the usual induction rule. The hered proposition rewrite
rule generates new deduction rules too:

heredL

Γ �+ m ∈ P, Δ Γ, s(m) ∈ P �+ Δ

Γ, H(P ) �+ Δ

heredR

Γ, m ∈ P �+ s(m) ∈ P, Δ

Γ �+ H(P ), Δ
m �∈ FV(Γ, Δ)

Once again, the right rule corresponds to the usual semantics of heredity.
Main properties of the super sequent calculus associated with a delayed set of axioms

are its soundness and completeness w.r.t. classical predicate logic.

Theorem 1 (Soundness and completeness of super sequent calculus). Given Th an
axiomatic theory made of axioms of the form ∀x.(P ⇔ ϕ) with P atomic and R the
associated proposition rewrite rules, every proof of Γ �Dl(R) Δ in super sequent cal-
culus can be translated into a proof of Γ, Th � Δ in sequent calculus (soundness) and
conversely (completeness).

Proof. Soundness. This is easily proved by replacing every occurrence of a superrule
RR obtained from P → ϕ by the partial proof derived during its computation. Then by
translating the unfolding step by an application of⇒L.

CONTRL

∀L

∀L

∧L

⇒L

AX
Γ, Th, P � P, Δ

πR

Γ, Th, ϕ � Δ

Γ, Th, P ⇒ ϕ � P, Δ

Γ, Th, P ⇔ ϕ, P � Δ

. . .

Γ, Th, ∀x.(P ⇔ ϕ), P � Δ

Γ, Th, P � Δ

The left case is symmetric.
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Completeness. Let π be the proof of Γ, Th � Δ. By cutting the conclusion on Th, the
problem is brought down to proving the axioms of Th in the super sequent calculus.

CUT

. . .

Γ �+R Th, Δ

π

Γ, Th �+R Δ

Γ �+R Δ

This is done by induction on the derivations of RR and RL for each rewrite rule R ofR.
The full proof is in [Bra06]. ��

A proof-term language for superdeduction has been designed in [BHK07] together with
a cut-elimination procedure shown to be strongly normalising under appropriate prop-
erties. We will recall its definition now and the full proofs of the strong normalisation
property will be written in Section 4. This proof-term language is based upon Chris-
tian Urban’s work on cut-elimination for classical sequent calculus [Urb00, Urb01,
UB01, Len03, vBLL05]. The main difference between Urban’s proof-terms and other
approaches such as Hugo Herbelin’s λ̄μμ̃-calculus [Her95, CH00, Wad03] is that no
focus is made on a particular formula of a sequent Γ � Δ, and thus a proof-term M
always annotate the full sequent. Such typing judgements are denoted M �Γ � Δ. It is
explained in [BHK07] why this difference between Urban’s and Herbelin’s approaches
made us choose the first one to base our proof-terms for superdeduction upon.

Urban’s proof-term language for classical sequent calculus makes no use of the first-
class objects of the λ-calculus such as abstractions or variables. Variables are replaced
by names and conames. Let X and A be respectively the set of names and the set of
conames. Symbols x, y, . . . will range over X while symbols a, b, . . . will range over
A. Symbols x, y, . . . will range over the set of first-order variables. Left-contexts and
right-contexts are sets containing respectively pairs x : ϕ and pairs a : ϕ. Symbol Γ
will range over left-contexts and symbol Δ will range over the right-contexts. Moreover,
contexts cannot contain more than one occurrence of a name or coname. We will never
omit the ‘first-order’ in ‘first-order term’ in order to avoid confusion with ‘terms’ (i.e.
proof-terms). The set of terms is defined as follows.

M, N ::= Ax(x, a) | Cut(âM, x̂N) | FalseL(x) | TrueR(a)
| AndR(âM, b̂N, c) | AndL(x̂ŷM, z) | OrR(âb̂M, c) | OrL(x̂M, ŷN, z)
| ImpR(x̂âM, b) | ImpL(x̂M, âN, y) | ExistsR(âM, t, b) | ExistsL(x̂x̂M, y)
| ForallR(âx̂M, b) | ForallL(x̂M, t, y)

Names and conames are not called variables and covariables such as in λ̄μμ̃-calculus
since they do not represent places where terms might be inserted. They still may appear
bound: the symbol «̂» is the unique binder of the calculus and thus we can compute the
sets of free and bound names, conames and first-order variables in any term. We conse-
quently adopt Barendregt’s convention on names, conames and first-order variables: in
a term or in a statement a name, a coname or a first-order variable is never both bound
and free in the same context.

The type system is expressed in Figure 2. The differences with Urban’s type system

is the use of
∨R

Γ � ϕ1, ϕ2, Δ

Γ � ϕ1 ∨ ϕ2, Δ instead of
∨R-i

Γ � ϕi, Δ

Γ � ϕ1 ∨ ϕ2, Δ for i ∈ {1, 2}
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and similarly for ∧. A comma in a conclusion stands for the set union and a comma in a
premise stands for the disjoint set union. This allows our type inference rules to contain
implicit contraction.

A term M introduces the name z if it is of the form Ax(z, a), FalseL(z),
AndL(x̂ŷM, z), OrL(x̂M , ŷN, z), ImpL(x̂M, âN, z), ExistsL(x̂x̂M, z),
ForallL(x̂M, t, z), and it introduces the coname c is it is of the form Ax(x, c), TrueR(c),
AndR(âM, b̂N, c), OrR(âb̂M, c), ImpR(x̂âM, c), ExistsR(âM, t, c), ForallR(âx̂M, c).
A term M freshly introduces a name or a coname if it introduces it, but none of its proper
subterms. It means that the corresponding formula is introduced at the top-level of the
proof, but not implicitly contracted and consequently introduced in some subproof.

Figure 3 presents a (non-confluent) cut-elimination procedure denoted
cut−→ proven

to be strongly normalising on well-typed terms in [Urb00, UB01]. It is complete in the
sense that irreducible terms are cut-free. M [b �→ a] stands for the term M where every
free occurrence of the coname b is rewritten to a (and similarly for Q[y �→ x]). Besides,
the proof substitution operation denoted M [a := x̂N ] and its dual M [x := âN ] are
defined in Figure 4.

AX
Ax(x, a) � Γ, x : ϕ � a : ϕ, Δ

CUT
M � Γ � a : ϕ, Δ N � Γ, x : ϕ � Δ

Cut(baM, bxN) � Γ � Δ

⊥L
FalseL(x) � Γ, x : ⊥ � Δ


R
TrueR(a) � Γ � a : 
, Δ

∧R

M � Γ � a : ϕ1, Δ N � Γ � b : ϕ2, Δ

AndR(baM,bbN, c) � Γ � c : ϕ1 ∧ ϕ2, Δ
∧L

M � Γ, x : ϕ1, y : ϕ2 � Δ

AndL(bxbyM, z) � Γ, z : ϕ1 ∧ ϕ2 � Δ

∨R

M � Γ � a : ϕ1, b : ϕ2, Δ

OrR(babbM, c) � Γ � c : ϕ1 ∨ ϕ2, Δ
∨L

M � Γ, x : ϕ1 � Δ N � Γ, y : ϕ2 � Δ

OrL(bxM, byN, z) � Γ, z : ϕ1 ∨ ϕ2 � Δ

⇒R

M � Γ, x : ϕ1 � a : ϕ2, Δ

ImpR(bxbaM, b) � Γ � b : ϕ1 ⇒ ϕ2, Δ
⇒L

M � Γ, x : ϕ2 � Δ N � Γ � a : ϕ1, Δ

ImpL(bxM, baN, y) � Γ, y : ϕ1 ⇒ ϕ2 � Δ

∃L

M � Γ, x : ϕ � Δ

ExistsL(bxbxM, y) � Γ, y : ∃x.ϕ � Δ
x /∈ FV(Γ, Δ)

∃R

M � Γ � a : ϕ[x := t], Δ

ExistsR(baM, t, b) � Γ � b : ∃x.ϕ, Δ
∀L

M � Γ, x : ϕ[x := t] � Δ

ForallL(bxM, t, y) � Γ, y : ∀x.ϕ � Δ

∀R

M � Γ � a : ϕ, Δ

ForallR(babxM, b) � Γ � b : ∀x.ϕ, Δ
x /∈ FV(Γ, Δ)

Fig. 2. Type system

Now let us extend Urban’s proof-term language for superdeduction. During the com-
putation of the deduction rules for some proposition rewrite rule, the procedure com-
putes an open derivation where two kinds of information still need to be provided:
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Logical Cuts:

Cut(baM, bxAx(x, b))
cut−→ M [a �→ b] if M freshly introduces a

Cut(baAx(y, a), bxM)
cut−→ M [x �→ y] if M freshly introduces x

Cut(baTrueR(a), bxM)
cut−→ M if M freshly introduces x

Cut(baM, bxFalseL(x))
cut−→ M if M freshly introduces a

Cut(baAndR(bbM1, bcM2, a), bxAndL(bybzN, x))
cut−→

(
Cut(bbM1, byCut(bcM2, bzN))

Cut(bcM2, bzCut(bbM1, byN))

if AndR(bbM1, bcM2, a) and AndL(bybzN, x) freshly introduce a and x

Cut(baOrR(bbbcM, a), bxOrL(byN1, bzN2, x))
cut−→

(
Cut(bbCut(bcM, bzN2), byN1)

Cut(bcCut(bbM, byN1), bzN2)

if OrR(bbbcM, a) and OrL(byN1, bzN2, x) freshly introduce a and x

Cut(baImpR(bxbbM, a), byImpL(bzN1, bcN2, y))
cut−→

(
Cut(bbCut(bcN2, bxM), bzN1)

Cut(bcN2, bxCut(bbM, bzN1))

if ImpR(bxbbM, a) and ImpL(bzN1, bcN2, y) freshly introduce a and y

Cut(baExistsR(bbM, t, a), bxExistsL(bybxN, x))
cut−→ Cut(bbM, byN [x := t])

if ExistsR(bbM, t, a) and ExistsL(bybxN, x) freshly introduce a and x

Cut(baForallR(bbbxM, a), bxForallL(byN, t, x))
cut−→ Cut(bbM [x := t], byN)

if ForallR(bbbxM, a) and ForallL(byN, t, x) freshly introduce a and x

Commuting Cuts: Cut(baM, bxN)
cut−→

j
M [a := bxN ] if M does not freshly introduce a, or
N [x := baM ] if M does not freshly introduce x

Fig. 3. Urban’s cut-reductions

(1) premises that remain to be proved and (2) first-order terms written at a metalevel by
rules ∃R and ∀L that still remain to be instantiated. In order to represent these, we use a
formal notion of open-terms: terms that contains (1) open leaves that represent premises
that remain to be proved and are denoted �, and (2) placeholders for first-order terms
that represent uninstantiated first-order terms and are denoted by α, β, . . . Substitutions
over placeholder-terms are written [α := t, . . . ] and are defined over first-order terms,
formulæ, sequents, and terms. The syntax of open-terms is then:

C, D ::= � � Γ � Δ | Ax(x, a) | Cut(âC, x̂D)
| . . .
| ExistsR(âC, α, b) | ExistsL(x̂x̂C, y)
| ForallR(âx̂C, b) | ForallL(x̂C, α, y)

Urban’s cut-elimination procedure is extended to open-terms in the obvious way. Typing
is also extended to open-terms by adding the following rule to the type inference rules
of Figure 2.

(� � Γ � Δ) � Γ � Δ
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Ax(x, c)[c := �yM ] � M [y �→ x]

Ax(y, a)[y := �cM ] � M [c �→ a]

AndR(�aM1,�bM2, c)[c := �yN ] � Cut(�cAndR(�aM1[c := �yN ],�bM2[c := �yN ], c), �yN)

AndL(�x�yM, z)[z := �aN ] � Cut(�aN, �zAndL(�x�yM [z := �aN ], z))
. . .

ExistsR(�aM, t, b)[b := �xN ] � Cut(�bExistsR(�aM [b := �xN ], t, b), �xN)

ExistsL(�x�xM, y)[y := �aN ] � Cut(�aN, �yExistsL(�x�xM [y := �aN ], y))
. . .

Otherwise :
Ax(x, a)[ϑ] � Ax(x, a)

Cut(�aM, �xN)[ϑ] � Cut(�aM [ϑ], �xN [ϑ])

AndR(�aM1,�bM2, c)[ϑ] � AndR(�aM1[ϑ],�bM2[ϑ], c)

AndL(�x�yM, z)[ϑ] � AndL(�x�yM [ϑ], z)
. . .

ExistsR(�aM, t, b)[ϑ] � ExistsR(�aM [ϑ], t, b)

ExistsL(�x�xM, y)[ϑ] � ExistsL(�x�xM [ϑ], y)
. . .

Fig. 4. Proof Substitution

These leaves will be denoted for short � � Γ � Δ . Type inference derivation for open-
terms are called open type inference derivations. Their open leaves are the later leaves,
i.e. the open leaves of the open-term. For some open-term C, its number of occur-
rences of � is denoted nC . Then for some placeholder-term substitution σ = [α1 :=
t1, . . . , αp := tp] where all placeholder-terms appearing in C are substituted by σ (we
say that σ covers C) and for M1, . . . , MnC some terms, we define the term
σC[M1, . . . , MnC ] as follows.

– if C is a term and nC = 0 then trivially σC[] � σC ;
– if C = � � Γ � Δ and nC = 1 then σC[M ] � M ;
– if C = AndR(âC1, b̂C2, c)[M1, . . . , MnC ] then

σC[M1, . . . , MnC ] � AndR(âσC1[M1, . . . , MnC1
], b̂σC2[MnC1+1, . . . , MnC ], c);

– if C = ExistsL(x̂x̂C1, y), then

σC[M1, . . . , MnC ] � ExistsL(x̂x̂σC1[M1, . . . , MnC ], y) ;

– if C = ExistsR(âC1, α, b), then

σC[M1, . . . , MnC ] � ExistsR(âσC1[M1, . . . , MnC ], σα, b) ;

– the other remaining cases are similar.

Let us define now the extended terms and reduction rules associated with the propo-
sition rewrite rule R : P → ϕ. For some formula ϕ, for x and a some name and coname,
the open-terms denoted 〈|� a : ϕ |〉 and 〈| x : ϕ �|〉 are defined as follows.
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〈| Γ � Δ |〉 � � � Γ � Δ if Γ and Δ only contain atomic formulæ
〈| Γ, x : ϕ � a : ϕ, Δ |〉 � Ax(x, a)
〈| Γ � a : ϕ1 ⇒ ϕ2, Δ |〉 � ImpR(x̂b̂〈| Γ, x : ϕ1 � b : ϕ2, Δ |〉, a)
〈| Γ, x : ϕ1 ⇒ ϕ2 � Δ |〉 � ImpL(ŷ〈| Γ, y : ϕ2 � Δ |〉, â〈| Γ � a : ϕ1, Δ |〉, x)
〈| Γ � a : ϕ1 ∨ ϕ2, Δ |〉 � OrR(̂bĉ〈| Γ � b : ϕ1, c : ϕ2, Δ |〉, a)
〈| Γ, x : ϕ1 ∨ ϕ2 � Δ |〉 � OrL(ŷ〈| Γ, y : ϕ1 � Δ |〉, ẑ〈| Γ, z : ϕ2 � Δ |〉, x)
〈| Γ � a : ϕ1 ∧ ϕ2, Δ |〉 � AndR (̂b〈| Γ � b : ϕ1, Δ |〉, ĉ〈| Γ � c : ϕ2, Δ |〉, a)
〈| Γ, x : ϕ1 ∨ ϕ2 � Δ |〉 � AndL(ŷẑ〈| Γ, y : ϕ1, z : ϕ2 � Δ |〉, x)
〈| Γ � a : ∃x.ϕ, Δ |〉 � ExistsR(̂b〈| Γ � b : ϕ[x := α], Δ |〉, α, a) α is fresh
〈| Γ, x : ∃x.ϕ � Δ |〉 � ExistsL(ŷx̂〈| Γ, y : ϕ � Δ |〉, x) if x /∈ FV(Γ, Δ)
〈| Γ � a : ∀x.ϕ, Δ |〉 � ForallR (̂bx̂〈| Γ � b : ϕ, Δ |〉, a) if x /∈ FV(Γ, Δ)
〈| Γ, x : ∀x.ϕ � Δ |〉 � ForallL(ŷ〈| Γ, y : ϕ[x := α] � Δ |〉, α, x) α is fresh

The definition is non-deterministic just as the definition of new deduction rules in super
sequent calculus systems. We may pick any of the possibilities just as we do for the
computation of new deduction rules.

We prove the following lemma, which states the adequacy of the typing of 〈|� a : ϕ |〉
(resp. 〈| x : ϕ �|〉) with the right (resp. left) superdeduction rule associated with a
proposition rewrite rule P → ϕ.

Lemma 1. Let R : P → ϕ be some proposition rewrite rule and let C be the open-
term 〈|� a : ϕ |〉. Then, for any instance of the right rule RR having Γ � a : P, Δ
as its conclusion, C � Γ � a : ϕ, Δ is well-typed, and moreover there exists some
substitution σ for placeholder-terms covering C such that the sequents in the premises
of C substituted by σ are the premises of this instance of RR.

Proof. By construction, an instance of RR can be transformed into a decomposition of
the logical connectors of ϕ, and thus into some open type inference of C�Γ � a : ϕ, Δ,
by construction of C. The substitution σ substitutes for the placeholder-terms in this
open type inference derivation the terms that are used in this instance of RR. We obtain
thus that the sequents in the premises of C substituted by σ are the premises of this
instance of RR. ��

An analogous version of Lemma 1 can be proven for the introduction of P on the left.
We propose the type inference rules presented as follows for introducing P on the left
and on the right.

RR

(
Mi � Γ, xi

1 : Ai
1, . . . , x

i
pi

: Ai
pi
� ai

1 : Bi
1, . . . , a

i
qi

: Bi
qi

, Δ
)
1�i�n

RR

(
x̂1 . . . x̂p,

(
x̂i

1 . . . x̂i
pi

âi
1 . . . âi

qi
Mi

)
,

1�i�n

α1, . . . , αq, a

)
� Γ � a : P, Δ

C

n is the number of open leaves of 〈|� a : ϕ |〉. The side condition C is the side con-
dition of the corresponding rule in the super sequent calculus. The first-order variables
x1, . . . , xp are the variables concerned by this side condition and by Lemma 1, they are
the bound first-order variables of 〈|� a : ϕ |〉. The α1, . . . , αq are the placeholder-
terms appearing in this later open-term. When using this type inference rule, these
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placeholder-terms are to be instantiated by first-order terms in the proof-terms as in
the formulæ.

RL

(
Nj � Γ, yj

1 : Cj
1 , . . . , yj

rj
: Cj

rj
� bj

1 : Dj
1, . . . , b

j
sj

: Dj
sj

, Δ
)

1�j�m

RL

(
ŷ1 . . . ŷr,

(
ŷj
1 . . . ŷj

rj b̂
j
1 . . . b̂j

sj Nj

)
,

1�j�m

β1, . . . , βs, x

)
� Γ, x : P � Δ

C′

m is the number of open leaves of 〈| x : ϕ �|〉. The side condition C′ is the side
condition of the corresponding rule in the super sequent calculus. The first-order vari-
ables y1, . . . , yr are the variables concerned by this side condition and by the version
of Lemma 1 for introducing P on the left, they are the bound first-order variables of
〈| x : ϕ �|〉. The β1, . . . , βs are the placeholder-terms appearing in this later open-term.
By duality it is expected that p = s and q = r. When using this type inference rule,
these placeholder-terms are to be instantiated by first-order terms in the proof-terms as
in the formulæ.

We obtain the extended proof-terms for a super sequent calculus system. Proofs sub-
stitutions are extended in the obvious way on proof-terms.

The extended cut-elimination associated with
cut−→, denoted

excut−→, is defined as fol-
lows. For each proposition rewrite rule R : P → ϕ, for each reduction

Cut(â〈|� a : ϕ |〉, x̂〈| x : ϕ �|〉) cut−→
+

C

where C is a normal form for
cut−→, we add to

cut−→ the following rewrite rule.

σCut

(
âRR

(
x̂1 . . . x̂p,

(
x̂i

1 . . . x̂i
pi

âi
1 . . . âi

qi
Mi

)
,

1�i�n

α1 . . . αq, a

)
,

x̂RL

(
ŷ1 . . . ŷr,

(
ŷj
1 . . . ŷj

rj b̂
j
1 . . . b̂j

sj Nj

)
,

1�j�m

β1 . . . βs, x

))

excut−→ σC[M1, . . . , Nm]

if RR(. . . ) and RL(. . . ) freshly introduce a and x

Here σ substitutes for each placeholder-term a first-order term. However these terms
are meta just as the symbol t in the eighth and ninth rules of Figure 2.

The cut-elimination
excut−→ is complete: any instance of a cut is a redex and thus a

normal form for
excut−→ is cut-free.

An important result of [BHK07] is the following theorem.

Theorem 2 (Strong Normalisation). Let us suppose that the set of proposition rewrite
rulesR is such that for each of its rules R : P → ϕ:

– P contains only first-order variables (no function symbol or constant);
– FV(ϕ) ⊆ FV(P );
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and such that the rewrite relation
prop−→ associated with R is weakly normalising and

confluent. Then
excut−→ is strongly normalising on well-typed extended terms.

The proof of this theorem is detailed in Section 4. It uses the normal forms of formulæ
through the rewrite relation

prop−→ to translate proofs in superdeduction into proofs in
usual sequent calculus and thus requires that

prop−→ is weak normalising and confluent.
Besides the translation of existential/universal rules requires the two other hypothesis,
as it will be explained by a precise counter-example in Section 3.

It is interesting to notice that since Hypothesis 1 implies the cut-admissibility in
the super sequent calculus system, and since this system is sound and complete w.r.t.
predicate logic, it implies the consistency of the corresponding first-order theory.

3 A Foundation for New Proof Assistants

The first strong argument in favour of proof assistants based on superdeduction is the
representation of proofs. Indeed, existing proof assistants such as COQ, Isabelle or PVS
are based on the proof planning paradigm, where proofs are represented by a succession
of applications of tactics and of tacticals. COQ also builds a proof-term, in particular
to bring the proof check down to a micro kernel. In these approaches, the witness of
the proof is bound to convince the user that the proof is correct but not to actually
explain it, as usual mathematical proofs often also do. Even if the proof-terms of COQ

are displayed as trees or under the form of natural language text, the main steps of the
proof are drown in a multitude of usually not expressed logical arguments due to both
the underlying calculus and the presence of purely computational parts, e.g. the proof
that 2 + 3 equals 5.

Deduction modulo is a first step forward addressing this later issue by internalis-
ing computational aspects of a theory inside a congruence. With the canonical rewrite
system on naturals, P (2 + 3) � P (5) becomes an axiom. However a congruence de-
fined by proposition rewrite rules whose right-hand side is not atomic does not bring
the expected comfort to interactive proving: the choice of a proposition representative
in the congruence introduces some nondeterminism which is neither useful nor wanted.
Superdeduction solves this problem by narrowing the choice of a deduction rule to the
presence in the goal of one of the extended deduction rules conclusions and goes a step
further by also eliminating trivial logical arguments in a proof. Thereby, superdeduction
provides a framework for naturally building but also communicating and understanding
the essence of proofs.

Notice that extended deduction rules contain only atomic premises and conclusions,
thus proof building in this system is like plugging in theorems, definitions and axioms
together. This points out the fact that logical arguments of proofs are actually encoded
by the structure of theorems, which explains why they are usually not mentionned.

Another important aspect of superdeduction is its potential ability to naturally encode
custom reasoning schemes. Let us see how superdeduction behaves in practice when
confronted to common situations of theorem proving.
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3.1 Higher-Order Logic

An interesting case is the encoding of other logics like higher-order logic which has
been expressed through proposition rewrite rules in [Dow97]. As an example, the propo-
sition rewrite rule ε(α(∀̇, x)) → ∀y.ε(α(x, y)) is translated into the following deduction
rules which mimic the deduction rules of higher-order logic.

Γ �+ ε(α(x, y)), Δ

Γ �+ ε(α(∀̇, x)), Δ
(y /∈ FV(Γ ))

Γ, ε(α(x, t)) �+ Δ

Γ, ε(α(∀̇, x)) �+ Δ

The interesting point is that this behaviour is not encoded inside the underlying logic
but is the result of the chosen theory which is only a parameter of the system.

3.2 Induction

Another application field of superdeduction is the handling of induction schemes, in-
troduced in Section 2 with the example of structural induction over Peano naturals. Let
us carry on this by proving that every natural number is either odd or even in the super
sequent calculus. We start by defining the predicates even and odd with the following
three proposition rewrite rules.

zero : Even(0) → #
even : Even(s(n)) → Odd(n)
odd : Odd(s(n)) → Even(n)

This leads to six simple folding and unfolding rules.

zeroL

Γ �+R Δ

Γ, Even(0) �+R Δ
zeroR

Γ �+R Even(0), Δ

evenL

Γ, Odd(n) �+R Δ

Γ, Even(s(n)) �+R Δ
evenR

Γ �+R Odd(n), Δ
Γ �+R Even(s(n)), Δ

oddL

Γ, Even(n) �+R Δ

Γ, Odd(s(n)) �+R Δ
oddR

Γ �+R Even(n), Δ
Γ �+R Odd(s(n)), Δ

Finally, let us recall that the derived inference rules for induction encode second-order
reasoning by the use of classes, i.e. constants standing for propositions. For instance,
assuming that the ˙odd class represents the Odd predicate, we add the following axiom
to the context of the proof : ∀x.(x ∈ ˙odd ⇔ Odd(x)). Here, since we want to prove
that every natural is either odd or even, we introduce the ˙ooe class which encodes the
latter proposition. This is done through a proposition rewrite rule:

oddoreven : n ∈ ˙ooe → Odd(n) ∨ Even(n)

This leads to the creation of two new deduction rules for the super sequent calculus.

oddorevenL

Γ, Odd(n) �+R Δ Γ, Even(n) �+R Δ

Γ, n ∈ ˙ooe �+R Δ

oddorevenR

Γ �+R Odd(n), Even(n), Δ
Γ �+R n ∈ ˙ooe, Δ
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We finally can build a proof of n ∈ N �+R Odd(n) ∨ Even(n), which is depicted
by Figure 5 (some weakening steps are left implicit to lighten the proof tree). Let us
call respectively Π1, Π2 and Π3 the premises of the ∈NL rule. The proof appears to
be rather readable compared to a proof of the same proposition in classical sequent
calculus: we start by proving that zero is even or odd (Π1), then that the even or odd
property is hereditary (Π2) by using the deduction rules translating the definitions of
even, odd and zero. Then we prove that the proposition holds for every integer by using
the induction principle expressed by rule ∈NL . The subproof Π3 is purely axiomatic
and would be typically automated in a proof assistant.

∨R

∈NL

oddorevenR

zeroR �+R Odd(0), Even(0)

�+R 0 ∈ ˙ooe, Odd(n), Even(n)

heredR

oddorevenR

oddorevenL

evenR

AX
Odd(m) �+R Odd(m)

Odd(m) �+R Odd(s(m)), Even(s(m))
········

oddR

AX
Even(m) �+R Even(m)

Even(m) �+R Odd(s(m)), Even(s(m))

m ∈ ˙ooe �+R Odd(s(m)), Even(s(m))

m ∈ ˙ooe �+R s(m) ∈ ˙ooe

�+R H( ˙ooe), Odd(n), Even(n)
··········

oddorevenL

AX
Odd(n) �+R Odd(n), Even(n)

AX
Even(n) �+R Odd(n), Even(n)

n ∈ ˙ooe �+R Odd(n), Even(n)
··········································

n ∈ N �+R Odd(n), Even(n)

n ∈ N �+R Odd(n) ∨ Even(n)

Fig. 5. Proof of n ∈ N �+R Odd(n) ∨ Even(n)

Let us remark that in a framework mixing superdeduction and deduction modulo,
Π3 would be immediately closed by an axiom, while the encoding of second order by
classes could hardly disappear everywhere in the proof tree. Indeed, the proposition
m ∈ ˙ooe for instance would be equal to Odd(m) ∨ Even(m) �+R Odd(s(m)) ∨
Even(s(m)) modulo R, which would hide the explicit decoding by the successive
applications of oddorevenR and oddorevenL. The study of such a deduction system is
an active research topic.

One may argue that this approach is not viable within the framework of proof as-
sistants because it requires to virtually provide a class for each constructible proposition
of the language. This would lead to the introduction of an infinite number of constants
symbols, as well as an infinity of associated “decoding” axioms. This problem is ad-
dressed in [Kir06] which proposes a finite axiomatisation of the theory of classes. The
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basic idea is to introduce a constant symbol along with its decoding axiom for each
predicate symbol of the discourse. They shall be a finite number of them. As an exam-
ple, let us encode Odd and Even:

decodeeven : x ∈ ˙even→ Even(x)
decodeodd : x ∈ ˙odd→ Odd(x)

However this time, classes encoding complex propositions are built over this finite set
of constants using function symbols encoding logical connectors. For instance, the ∪
function symbol encodes the ∨ connector:

decodeunion : x ∈ a ∪ b → x ∈ a ∨ x ∈ b

This entails the encoding of the proposition Odd(x)∨Even(x) by the x ∈ ˙odd∪ ˙even
one. The difficulty of such an approach is the handling of bound variables and predi-
cates arities. This is achieved via the use of De Bruijn indices and axioms distributing
variables a la explicit substitutions. The latter proposition is eventually encoded by the
following term, whose derivation using the decoding axioms is provided here as an
example (see [Kir06] for more details):

x ::nil ∈ ˙odd(1) ∪ ˙even(1)
→ x ::nil ∈ ˙odd(1) ∨ x ::nil ∈ ˙even(1)
→ Odd(1[x ::nil]) ∨ x ::nil ∈ ˙even(1)
→ Odd(x) ∨ x ::nil ∈ ˙even(1)
→ Odd(x) ∨ Even(1[x ::nil])
→ Odd(x) ∨ Even(x)

This powerful mechanism enables the simulation of higher-order behaviour in proof
assistants in a natural way. Indeed, decoding is only calculus, which therefore is well
handled by both deduction modulo and superdeduction. Once again, a system mixing
the two approaches would totally hide the encoding part to the user through deduction
modulo while providing a natural way of expressing the induction reasoning via an
extended deduction rule.

3.3 Equality

Let us see now how superdeduction handles equality. Taken back to the previously dis-
cussed higher-order encoding, the Leibniz definition of equality is expressed as follows:

eq : x = y → ∀p.(x ::nil ∈ p ⇒ y ::nil ∈ p)

This leads to the derivation of the following new inference rules:

eqL

Γ �+R x ::nil ∈ p, Δ Γ, y ::nil ∈ p �+R Δ

Γ, x = y �+R Δ

eqR

Γ, x ::nil ∈ p �+R y ::nil ∈ p, Δ

Γ �+R x = y, Δ
p �∈ FV(Γ, Δ)
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The right rule is rather intuitive and is used to prove the reflexivity of equality in two
proof steps:

∀R

eqL

AX
x ::nil ∈ p �+R x ::nil ∈ p

�+R x = x

�+R ∀x.x = x

The left rule requires a class term encoding a proposition and is typically used to prove
extensionality of function symbols. For instance, given a function symbol f , let us prove
that x = y ⇒ f(x) = f(y) for any x and y. The appropriate proposition to feed the
axiom of Leibniz with would then be f(x) = f(α), parameterized by α. Let us translate
this into a class term and prove the proposition:

eqL

eqR

AX
f(x) ::nil ∈ p �+R f(x) ::nil ∈ p

�+R f(x) = f(x)
····

�+R x ::nil ∈ f(S(x))=̇1

AX
f(x) = f(y) �+R f(x) = f(y)

····
y ::nil ∈ f(S(x))=̇1 �+R f(x) = f(y)

x = y �+R f(x) = f(y)

The dots stands for decoding steps using axioms of [Kir06]. The S function symbol
should be read as “shift” and is part of the explicit substitution mechanism.

Thus, while Leibniz’ definition is adapted to proofs of equality metaproperties, sim-
ple notions like extensionality require some deduction steps. A natural use of superde-
duction would then be to translate this theorem into an inference rule:

fR

Γ �+R x = y, Δ

Γ �+R f(x) = f(y), Δ

However, this goes beyond the scope of superdeduction since the proved proposition
is not a proposition rewrite rule (i.e. an equivalence). A reasonable extension of su-
perdeduction would be the creation of only-right inference rules to translate axioms of
the shape ∀x.(P ⇒ ϕ). Nevertheless, the price to pay would be the loss of the cut-
elimination result. The question of extending the cut-elimination procedure to this case
is still open.

3.4 Cut-Elimination as a Translation

An interesting cut-reduction is the following. Let us consider the following proposition
rewrite rule:

INC : ∀A.∀B.(A ⊆ B → ∀x.(x ∈ A ⇒ x ∈ B))

First of all we construct the proof π1 of �+INC INC depicted in Figure 6 (in fact for
any theory Th, there is a proof of �+Th Th by completeness of superdeduction). The
proofterm associated with this proof is

π1 = ForallR(â2X̂ForallR(â3ŶAndR(â4ν1, â9ν2, a3), a2), a1)
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∀R

∀R

∧R

⇒R

∀R

⇒R

INCL

AX
x ∈ Y, x ∈ X �+INC x ∈ Y

AX
x ∈ X �+INC x ∈ Y, x ∈ X

X ⊆ Y, x ∈ X �+INC x ∈ Y

X ⊆ Y �+INC x ∈ X ⇒ x ∈ Y

X ⊆ Y �+INC ∀x.(x ∈ X ⇒ x ∈ Y)

�+INC X ⊆ Y ⇒ (∀x.(x ∈ X ⇒ x ∈ Y))
·····················

⇒R

INCR

∀L

⇒L

AX
x ∈ X �+INC x ∈ Y, x ∈ X

AX
x ∈ Y, x ∈ X �+INC x ∈ Y

x ∈ X ⇒ x ∈ Y, x ∈ X �+INC x ∈ Y

∀x.(x ∈ X ⇒ x ∈ Y), x ∈ X �+INC x ∈ Y

∀x.(x ∈ X ⇒ x ∈ Y) �+INC X ⊆ Y

�+INC (∀x.(x ∈ X ⇒ x ∈ Y)) ⇒ X ⊆ Y

�+INC X ⊆ Y ⇔ ∀x.(x ∈ X ⇒ x ∈ Y)

�+INC ∀Y.(X ⊆ Y ⇔ ∀x.(x ∈ X ⇒ x ∈ Y))

�+INC ∀X.∀Y.(X ⊆ Y ⇔ ∀x.(x ∈ X ⇒ x ∈ Y))

Fig. 6. The proof π1

with

ν1 = ImpR(x̂1â5ForallR(â6x̂ImpR(x̂2â7INCL(x̂3Ax(x3, a7),
â8Ax(x2, a8), x, x1), a6), a5), a4)

and

ν2 = ImpR(x̂4â10INCR(x̂x̂5â11ForallL(x̂6ImpL(x̂7Ax(x7, a11),
â12Ax(x5, a12), x6), x, x4), a10), a9)

Besides we propose the following proof of INC � A ⊆ A, denoted π2, in raw classical
sequent calculus.

∀L

∀L

∧L

⇒L

AX
. . . , A ⊆ A � A ⊆ A

∀R

⇒R

AX
. . . , x ∈ A � A ⊆ A, x ∈ A

. . . � A ⊆ A, x ∈ A ⇒ x ∈ A

. . . � A ⊆ A, ∀x.(x ∈ A⇒ x ∈ A)
. . . , (∀x.(x ∈ A⇒ x ∈ A)) ⇒ A ⊆ A � A ⊆ A

(A ⊆ A) ⇔ ∀x.(x ∈ A⇒ x ∈ A) � A ⊆ A

∀Y.(A ⊆ Y ) ⇔ ∀x.(x ∈ A⇒ x ∈ Y ) � A ⊆ A

INC � A ⊆ A

The proofterm associated with this proof is

π2 = ForallL(x̂9ForallL(x̂10AndL(x̂11x̂12ν3, x10), A, x9), A, x8)
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with

ν3 = ImpL(x̂13Ax(x13, a14),
â15ForallR(â16x̂ImpR(x̂14â17Ax(x14, a17), a16), a15), x12)

Now we wish to express the proof π2 in superdeduction. The corresponding proof
denoted π3 is

INCR

AX
x ∈ A �+INC x ∈ A

�+INC A ⊆ A

We will now obtain it directly from π2 (and from π1 whose construction only de-
pends on the axiom INC). Let us consider the proofterm Cut(â1π1, x̂8π2) which repre-
sents the proof

CUT

π1

�+INC INC

π2

INC � A ⊆ A

�+INC A ⊆ A

This proof can also be seen as the translation of the proof π2 in superdeduction: a cut is
used to delete the axiom INC from the context. Now it is interesting to understand that
the elimination of this cut will actually propagate the superdeduction inference rules
contained by π1 into the proof π2 and translate the (cut-free) proof of INC � A ⊆ A
into a (cut-free) proof of �+INC A ⊆ A replacing any use of the axiom INC by a super-
deduction rule. An elimination of this cut is depicted in Figure 7. Its result represents
the proof π3.

Cut( �a1π1,�x1π2)

= Cut( �a1ForallR( �a2�XForallR( �a3�YAndR( �a4ν1, �a9ν2, a3), a2), a1),
�x8ForallL(�x9ForallL(�x10AndL(�x11�x12ν3, x10), A, x9), A, x8))

excut−→
+

Cut( �a9ν2, �x12ν3)
= Cut( �a9ImpR(�x4�a10INCR(. . . ), a9),

�x12ImpL(�x13Ax(x13, a14), �a15ForallR(. . . ), �x12))
excut−→ Cut(�a10Cut(�a15ForallR(. . . ),�x4INCR(. . . )), �x13Ax(x13, a14))
excut−→ Cut(�a15ForallR(. . . ),�x4INCR(�x�x5�a11ForallL(. . . ), a14))
excut−→ INCR(�x�x5�a11Cut(�a15ForallR(. . . ),�x4ForallL(. . . )), a14)
excut−→ INCR(�x�x5�a11Cut(�a16ImpR(. . . ),�x6ImpL(. . . )), a14)
excut−→ INCR(�x�x5�a11Cut(�a12Ax(x5, a12),

�x14Cut(�a17Ax(x14, a17),�x7Ax(x7, a11))), a14)
excut−→

+
INCR(�x�x5�a11Ax(x5, a11), a14)

Fig. 7. A cut-elimination of INC
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3.5 Crabbe’s Counterexample

The (counter)example we consider now is known as Crabbe’s counterexample and con-
sists in R : A → B ∧ (A ⇒ ⊥). The open-terms associated with it are:

〈|� a : B ∧ (A⇒ ⊥) |〉 = AndR(̂bM1, ĉImpR(x̂b̂′M2, c), a)
〈| x : B ∧ (A ⇒ ⊥) �|〉 = AndL(ŷẑImpL(ŷ′FalseL(y′),

âM, z), x)
The reduction

Cut(âAndR(̂bM1, ĉImpR(x̂b̂′M2, c), a),
x̂AndL(ŷẑImpL(ŷ′FalseL(y′), âM, z), x))

cut−→
∗

Cut(̂bM1, ŷCut(âM, x̂M2))

is replaced by
Cut(âRR(̂bM1, x̂b̂′M2, a), x̂RL(ŷâM, x))

→ Cut(̂bM1, ŷCut(âM, x̂M2))

with ad hoc conditions on freshly introduced variables. Let us define the two following
terms.

δ � RL(ŷâAx(x, a), x)
Δ � RR(̂bAx(z, b), x̂b̂′δ, c)

The following reduction does not terminate:

Cut(ĉΔ, x̂δ)
= Cut(ĉΔ, x̂RL(ŷâAx(x, a), x))

RL(ŷâAx(x, a), x) does not freshly introduce x
→ RL(ŷâAx(x, a), x)[x := ĉΔ]
= Cut(ĉΔ, x̂RL(ŷâAx(x, a)[x := ĉΔ], x))
= Cut(ĉΔ, x̂RL(ŷâΔ[c �→ a], a))
=α Cut(ĉΔ, x̂RL(ŷĉΔ, a))
= Cut(ĉRR(̂bAx(z, b), x̂b̂′δ, c), x̂RL(ŷĉΔ, a))
→ Cut(ĉCut(̂bAx(z, b), ŷΔ), x̂δ)

Δ does not freshly introduces y

→ Cut(ĉΔ[y := b̂Ax(z, b)], x̂δ)
= Cut(ĉΔ, x̂δ)
→ . . .

This proposition rewrite rules thus breaks cut-elimination. It obviously does not satisfy
Hypothesis 1.

3.6 A Convergent Presentation of Russel’s Paradox

This interesting example has first been exposed for deduction modulo in [DW03]. It
will be adapted here for superdeduction. Let us consider these two proposition rewrite
rules.

R1 : R ∈ R → ∀y.(y ) R ⇒ (R ∈ y ⇒ ⊥))
R2 : y ) z → ∀y.(x ∈ y ⇒ z ∈ y)
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The associated inference rules are

R1
R

Γ, y ) R, R ∈ y � Δ

Γ � R ∈ R, Δ
y /∈ FV(Γ, Δ) R1

L

Γ � R ∈ t, Δ Γ � t ) R, Δ

Γ, R ∈ R � Δ

R2
R

Γ, x ∈ t1 � x ∈ t2, Δ

Γ � t1 ) t2, Δ
x /∈ FV(Γ, Δ) R2

L

Γ, t ∈ t2 � Δ Γ � t ∈ t1, Δ

Γ, t1 ) t2 � Δ

Then we can prove � ⊥.

CUT

R1
R

CUT

R2
L

AX
R ∈ R, R ∈ y � R ∈ R,⊥

AX
R ∈ y � R ∈ y, R ∈ R,⊥

y ) R, R ∈ y � R ∈ R,⊥
················

· · · · · · · · · · · · · · · · · · · · ·
y ) R, R ∈ y, R ∈ R � ⊥
y ) R, R ∈ y � ⊥
� R ∈ R,⊥

R1
L

AX
R ∈ R � R ∈ R,⊥

R2
L

AX
R ∈ R, x ∈ R � x ∈ R,⊥

R ∈ R � R ) R,⊥
R ∈ R � ⊥

············
� ⊥

The deduction system is not consistent and since there is no cut-free proof of � ⊥,
strong normalisation of the cut-reduction does not hold. The set of proposition rewrite
rules {R1, R2} does not satisfy the hypothesis of Theorem 2 because of the constant R
in R ∈ R which also plays a central role in the proof of � ⊥.

3.7 Lemuridæ

All these properties led us to develop a proof assistant based on the super sequent cal-
culus: lemuridæ. It features extended deduction rules derivation with focussing, rewrit-
ing on first-order terms, proof building with the associated superdeduction system, as
well as some basic automatic tactics. It is implemented with the TOM [MR06] lan-
guage, which provides powerful (associative) rewriting capabilities and strategic pro-
grammation on top of JAVA. The choice of the TOM language has several beneficial
consequences. First of all, the expressiveness of the language allows for clean and short
code. This is in particular the case of the micro proofchecker, whose patterns faithfully
translate deduction rules of sequent calculus. Thus, the proofchecker is only one hun-
dred lines long and it is therefore more realistic to convince everyone that it is actually
sound.

The other main contribution of TOM to lemuridæ is the expression of tacticals by
strategies. The TOM strategy language is directly inspired from early research on
ELAN [VB98] and ρ-calculus and allows to compose basic strategies to express com-
plex programs using strategies combinators. In this formalism, a naive proof search
tactical is simply expressed by topdown(elim), where topdown is a “call-by-name”
strategy and elim has the usual semantics of the corresponding command.
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4 Full Proofs of the Principles

In this section we provide the full proofs of Theorem 2. Let us prove first the following
simple result.

Lemma 2. For some well-typed open-term C�Γ � Δ whose open leaves are ��Γi �
Δi for 1 � i � nC , for some σ covering C, if for all 1 � i � nC , Mi � σΓi � σΔi is
a well-typed term, then σC[M1, . . . , MnC ] � σΓ � σΔ is a well-typed term.

Proof. We proceed by induction on the context C.

– If it is � � Γ � Δ, typed by Γ � Δ, then its type inference derivation is the single
leaf

� � Γ � Δ

and nC = 1. As by hypothesis M1 � σΓ � σΔ is well-typed, and as by definition
σC[M1] = M1, σC[M1] � σΓ � σΔ is well-typed.

– If it is Ax(x, a), typed by Γ ′, x : ϕ � a : ϕ, Δ′. then its type inference derivation
has no leaf since it is

AX
Ax(x, a) � Γ ′, x : ϕ � a : ϕ, Δ′

Then C = σC[] is a term and σC[] � σΓ � σΔ is a well-typed term.
– If it is AndR (̂bC1, ĉC2, a), the type inference is

∧R

. . .

C1 � Γ � b : ϕ1, Δ
′

. . .

C2 � Γ � c : ϕ2, Δ
′

AndR(̂bC1, ĉC2, a) � Γ � a : ϕ1 ∧ ϕ2, Δ
′

By induction hypothesis,

σC1[M1, . . . , MnC1
] � σΓ, b : σϕ1, σΔ′

and
σC2[MnC1+1, . . . , MnC1+nC2

] � σΓ, c : σϕ2, σΔ′

are well-typed. Then

σC[M1, . . . , MnC ] � σΓ � a : σϕ1 ∧ σϕ2, σΔ′

is well-typed.
– If it is ExistsR(âC1, α, b), the type inference is

∃R

. . .

C1 � Γ � a : ϕ[x := α], Δ′

ExistsR(âC1, α, b) � Γ � b : ∃x.ϕ, Δ′

By induction hypothesis,

σC1[M1, . . . , MnC ] � σΓ � a : (σϕ)[x := σα], σΔ′
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is well-typed and then

σC[M1, . . . , MnC ] � σΓ � b : ∃x.σϕ, σΔ′

is well-typed.
– If it is ExistsL(x̂x̂C1, y), the type inference is

∃L

. . .

C1 � Γ, x : ϕ � Δ′

ExistsL(x̂x̂C1, y) � Γ, y : ∃x.ϕ � Δ′ x /∈ FV(Γ, Δ′)

By induction hypothesis,

σC1[M1, . . . , MnC ] � σΓ, x : σϕ � σΔ′

is well-typed, and then

σC[M1, . . . , MnC ] � σΓ, y : ∃x.σϕ � σΔ′

is well-typed.
– other cases are similar.

��

Subject reduction is implied by Lemmas 2 and 1.

Lemma 3 (Subject Reduction). If M
excut−→

∗
M ′ and M � Γ � Δ is well-typed, then

M ′ � Γ � Δ is well-typed.

Proof. By inspection of the rules defining
excut−→. ��

We define a rewrite system denoted
prop−→ on propositions by turning each proposition

rewrite rule into a rewrite rule in the standard way (see for example [DHK03]). We
define a rewrite system denoted

term−→ on extended proof-terms as follows. It contains for
each R : P → ϕ the rewrite rule

σRR

⎛
⎝̂x1 . . . x̂p,

(
x̂i

1 . . . x̂i
pi

âi
1 . . . âi

qi
Mi

)
1�i�n

, α1 . . . αq, a

⎞
⎠term−→ σ〈|� a : ϕ |〉[M1, . . . , Mn]

where σ is a substitution over placeholder-terms covering 〈|� a : ϕ |〉 (here the bound
names and conames of this later open-term are supposed different from the free and
bound names and conames of RR(. . . )) and the rewrite rule

σRL

⎛
⎝̂y1 . . . ŷr,

(
ŷj
1 . . . ŷj

rj b̂
j
1 . . . b̂j

sj Nj

)
1�j�m

, β1 . . . βs, x

⎞
⎠term−→ σ〈| x : ϕ �|〉[N1, . . . , Nm]

where σ is a substitution over placeholder-terms covering 〈| x : ϕ �|〉 (here the bound
names and conames of this later open-term are supposed different from the free and
bound names and conames of RL(. . . )).
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As
term−→ is orthogonal, it is confluent. Besides if

term−→ is confluent and weakly normal-
ising, then the unique normal form of an extended term M is denoted M ↓t. Similarly
if

prop−→ is confluent and weakly normalising, then the unique normal form of a formula ϕ
is denoted ϕ ↓p. This notation is extended to contexts and sequents. It is also extended
to open-terms, since they also contain sequents through the � � Γ � Δ constructor.

Let us prove now that
excut−→ is strongly normalising on well-typed extended terms

under the following hypothesis.

Hypothesis 1. For a set of proposition rewrite rules R, the rewrite relation
prop−→ asso-

ciated withR is weakly normalising and confluent and for each of its rule R : P → ϕ:

– P contains only first-order variables (no function or constant);
– FV(ϕ) ⊆ FV(P ).

The second hypothesis restricts the use of first-order constants and functions in par-
ticular to avoid counterexamples such as the presentation of Russel’s paradox from
[DW03] and presented in Section 3 for which the set of proposition rewrite rules termi-
nates but the cut-elimination does not.

Now let us begin our strong normalisation proof with the following lemmas. First, if

no proper subterm of M introduces some name or coname and if M
term−→

∗
M ′, then no

proper subterm of M ′ introduces this name of coname. This remark allows to prove the
following lemma.

Lemma 4. If M
term−→ M ′ then M freshly introduces some name or coname is equiva-

lent to M ′ freshly introduces this name of coname.

By definition of
term−→ with respect to substitutions over first-order variables, the follow-

ing lemma is straightforward.

Lemma 5. If M
term−→M ′, then for all substitution [x := t], M [x := t] term−→M ′[x := t].

This result extends obviously to
term−→

∗
.

This allows to prove the following corollary.

Corollary 1. If
term−→ is weakly normalising, for all M and [x := t], (M [x := t]) ↓t=

(M ↓t)[x := t].

Proof. By Lemma 5 and since M
term−→

∗
M ↓t, then M [x := t] term−→

∗
(M ↓t)[x := t].

Moreover it is to be noticed that by definition of
term−→ and for all term N , N contains a

redex for
term−→ implies that N [x := t] contains a redex. Therefore (M ↓t)[x := t] is a

normal form for
term−→ and it is (M [x := t]) ↓t. ��

We supposed that in any proposition rewrite rule R : P → ϕ, P (which is a predicate)
only contains first-order variables, and no first-order constant or function. Thus it im-
plies the following lemma.

Lemma 6. Let ϕ and ϕ′ be some first-order formulæ such that ϕ
prop−→ ϕ′. Let x be some

first-order variable and t be some first-order term. Then ϕ[x := t]
prop−→ ϕ′[x := t]
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Proof. We first suppose that the reduction ϕ
prop−→ ϕ′ is done at the head of ϕ. If the

reduction takes place inside a context, we proceed by induction on this context. ��

This result is extended to
prop−→

∗
in the obvious way. Besides, it implies the following

corollary.

Corollary 2. Let ϕ be some first-order formula. Let x be some first-order variable and
t be some first-order term. Then (ϕ[x := t]) ↓p= ϕ ↓p [x := t].

Proof. As ϕ
prop−→

∗
ϕ ↓p, by Lemma 6, ϕ[x := t]

prop−→
∗

ϕ ↓p [x := t]. If this later
formula contains some redex, this redex is an instance of P (x1, . . . , xn). Then ϕ ↓p

also contains an instance of P (x1, . . . , xn). This is a contradiction to the fact that ϕ ↓p

is a normal form for
prop−→. Thus ϕ ↓p [x := t] = (ϕ[x := t]) ↓p. ��

We can also prove a result similar to Corollary 2 on placeholder-terms substitutions.

Lemma 7. Let ϕ be some first-order formula. Let σ be some placeholder-terms substi-
tution. Then (σϕ) ↓p= σ(ϕ ↓p).

Proof. Similar to Corollary 2, with a lemma similar to Lemma 6. ��

The last hypothesis we did on the set of proposition rewrite rule is that for each R :
P → ϕ, we have FV(ϕ) ⊆ FV(P ). It allows to prove the following lemma.

Lemma 8. Let ϕ1 and ϕ2 be some formulæ such that ϕ1
prop−→ ϕ2. Then FV(ϕ2) ⊆

FV(ϕ1).

Proof. – If the reduction ϕ1
prop−→ ϕ2 takes place at the head of ϕ1. Then for some

R : P (x1, . . . , xp)→ ϕ, ϕ1 is P (t1, . . . , tp) where the ti are first-order terms. Then
ϕ2 is ϕ[(xi := ti)1�i�p]. As the free variables of ϕ are by hypothesis included in
{x1, . . . , xp}, the free variables of ϕ2 are included in FV(t1)∪· · ·∪FV(tp), which
is the set FV(ϕ1).

– If the reduction ϕ1
prop−→ ϕ2 takes place inside a context, we proceed by induction

on this context.
��

This result is extended to
prop−→

∗
in the obvious way.

Lemma 9. Any open type inference derivation of C � Γ � Δ with open leaves � �
Γi � Δi for 1 � i � nC may be turned into an open type inference derivation of
C ↓p �Γ ↓p� Δ ↓p with premises � � Γi ↓p� Δi ↓p.

Proof. By induction on the open type inference derivation.

– One of the base cases is for instance the axiom case : if C = Ax(x, a), and C �
Γ ′, x : ϕ � a : ϕ, Δ′ well-typed (by the axiom rule), then it is straightforward that
C ↓p �Γ ′ ↓p, x : ϕ ↓p� a : ϕ ↓p, Δ′ ↓p is well-typed.
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– Let us treat the case of an open leaf : if C = � � Γ � Δ, then C ↓p= � � Γ ↓p�
Δ ↓p is also well-typed.

(� � Γ ↓p� Δ ↓p) � Γ ↓p� Δ ↓p

– Let us treat the case of ∧R. In this case C is AndR(̂bC1, ĉC2, a) and the type infer-
ence derivation has the following form

∧R

(� � Γi � Δi)i∈{1,...,nC1}

. . .

C1 � Γ � b : ϕ1, Δ
′

(� � Γi � Δi)i∈{nC1+1,...,nC}

. . .

C2 � Γ � c : ϕ2, Δ
′

C � Γ � a : ϕ1 ∧ ϕ2, Δ
′

Then by induction hypothesis on the open type inference derivations of C1 and C2,
we obtain open type inference derivations of C1 ↓p �Γ ↓p� b : ϕ1 ↓p, Δ′ ↓p and
of C2 ↓p �Γ ↓p� c : ϕ2 ↓p, Δ′ ↓p with open leaves � � Γi ↓p� Δi ↓p. Finally
as (ϕ1 ∧ ϕ2) ↓p= ϕ1 ↓p ∧ϕ2 ↓p and C ↓p= AndR(̂bC1 ↓p, ĉC2 ↓p, a) this gives
using the rule ∧R an open type inference derivation of C ↓p �Γ ↓p� Δ ↓p.

– Let us treat the case of ∃R. In this case C is ExistsR(̂bC1, α, a) and the type infer-
ence derivation has the following form.

∃R

(� � Γi � Δi)1�i�nC

. . .

C1 � Γ � b : ϕ[x := α], Δ′

C � Γ � a : ∃x.ϕ, Δ′

Then by induction hypothesis on the open type inference derivations of C1, we
obtain an open type derivation of C1 ↓p �Γ ↓p� (ϕ[x := α]) ↓p, Δ′ ↓p with open
leaves � � Γi ↓p� Δi ↓p. By Corollary 2 (ϕ[x := α]) ↓p is equal to ϕ ↓p [x := α].
Finally as (∃x.ϕ) ↓p= ∃x.(ϕ) ↓p and as C ↓p= ExistsR(̂bC1, α, a) ↓p, this give an
open type inference derivation of C ↓p �Γ ↓p� Δ ↓p.

– Let us treat the case of ∃L. In this case C is ExistsL(ŷx̂C1, x) and the type inference
derivation has the following form.

∃L

(� � Γi � Δi)1�i�nC

. . .

C1 � Γ ′, y : ϕ � Δ

ExistsL(ŷx̂C1, x) � Γ ′, x : ∃x.ϕ � Δ
x /∈ FV(Γ ′, Δ)

Then by induction hypothesis on the open type inference derivation of C1, we ob-
tain an open type inference derivation of C1 ↓p �Γ ′ ↓p, y : ϕ ↓p� Δ ↓p with
open leaves � � Γi ↓p� Δi ↓p. First of all by Lemma 8 and as x /∈ FV(Γ ′, Δ), x
is not in FV(Γ ′ ↓p, Δ ↓p). Furthermore (∃x.ϕ) ↓p= ∃x.(ϕ) ↓p. Since C ↓p=
ExistsL(ŷx̂C1 ↓p, x), we can build an open type inference derivation of C ↓p

�Γ ↓p� Δ ↓p.
– other cases are similar.

��
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Lemma 10. If M � Γ � Δ is well-typed, then there exists M ′ such that M ′ � Γ ↓p�
Δ ↓p is well-typed. Besides M

term−→M ′ and M ′ is a normal form, denoted M
term!−→ M ′.

Proof. By induction on the type inference derivation of M � Γ � Δ.

– If the bottom rule of the derivation is for instance the Ax rule. M is Ax(x, a) and
the derivation is

AX
Ax(x, a) � Γ ′, x : ϕ � a : ϕ, Δ′

Then we can build the following derivation.

AX
Ax(x, a) � Γ ′ ↓p, x : ϕ ↓p� a : ϕ ↓p, Δ′ ↓p

Finally we can check that M
term!−→ Ax(x, a).

– If the bottom rule of the derivation is for instance the ∧R rule. M is
AndR (̂bM1, ĉM2, c) and the derivation is

∧R

. . .

M1 � Γ � b : ϕ1, Δ
′

. . .

M2 � Γ � c : ϕ2, Δ
′

M � Γ � a : ϕ1 ∧ ϕ2, Δ
′

By induction hypothesis there exists M ′
1 and M ′

2 such that M ′
1 � Γ ↓p� b : ϕ1 ↓p

, Δ′ ↓p and M ′
2 � Γ ↓p� c : ϕ2 ↓p, Δ′ ↓p are well-typed. Then we can build the

following derivation.

∧R

. . .

M ′
1 � Γ ↓p� b : ϕ1 ↓p, Δ′ ↓p

. . .

M ′
2 � Γ ↓p� c : ϕ2 ↓p, Δ′ ↓p

M ′ � Γ ↓p� a : ϕ1 ↓p ∧ϕ2 ↓p, Δ′ ↓p

where M ′ stands for AndR(̂bM ′
1, ĉM

′
2, c). Finally as ϕ1 ↓p ∧ϕ2 ↓p= (ϕ ∧ ϕ2) ↓p

we have found M ′ such that M ′ � Γ ↓p� Δ ↓p is well-typed and such that

M
term!−→ M ′.

– If the bottom rule of the derivation is for instance ∃R, M is ExistsR (̂bM1, t, a) and
the derivation is

∃R

. . .

M1 � Γ � a : ϕ[x := t], Δ′

M � Γ � a : ∃x.ϕ, Δ′

By induction hypothesis there exists M ′
1 such that M ′

1 � Γ ↓p� a : ϕ[x := t] ↓p,
Δ′ ↓p is well-typed. By Corollary 2, ϕ[x := t] ↓p= ϕ ↓p [x := t] and then we can
build the derivation.

∃R

. . .

M ′
1 � Γ ↓p� a : ϕ ↓p [x := t], Δ′ ↓p

M ′ � Γ ↓p� a : ∃x.ϕ ↓p, Δ′ ↓p

where M ′ stands for ExistsR (̂bM ′
1, t, a). Finally as (∃x.ϕ) ↓p= ∃x.ϕ ↓p, we have

found M ′ such that M ′ � Γ ↓p� Δ ↓p is well-typed and M
term!−→ M ′.
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– If the bottom rule of the derivation is for instance ∃L, M is ExistsL(ŷx̂M1, x) and
the derivation is

∃L

. . .

M1 � Γ ′, y : ϕ � Δ

M � Γ ′, x : ∃x.ϕ � Δ
x /∈ FV(Γ ′, Δ)

By induction hypothesis there exists M ′
1 such that M ′

1 � Γ ′ ↓p, x : ϕ ↓p� Δ ↓p is
well-typed. As x /∈ FV(Γ ′, Δ) and by Lemma 8, x /∈ FV(Γ ′ ↓p, Δ ↓p), we can
build the following derivation.

∃L

. . .

M ′
1 � Γ ′ ↓p, y : ϕ ↓p� Δ ↓p

M ′ � Γ ′ ↓p, x : ∃x.ϕ ↓p� Δ ↓p x /∈ FV(Γ ′ ↓p, Δ ↓p)

where M ′ stands for ExistsL(ŷx̂M ′
1, x). Finally as ∃x.ϕ ↓p= ∃x.ϕ ↓p, we have

found M ′ such as M ′ � Γ ↓p� Δ ↓p is well-typed and M
term!−→ M ′.

– If the bottom rule of the derivation is not an extended rule, other cases are similar.
– If the bottom rule of the derivation is an extended rule, say RR for R : P → ϕ, it

has the form

RR

(Mi � Γi � Δi)i

RR(. . . , (. . . Mi)i, . . . , a) � Γ � a : P, Δ′ C

Let us denote C = 〈|� a : ϕ |〉. By induction hypothesis there exists M ′
1, . . . , M

′
nC

such that for all i, M ′
i � Γi ↓p� Δi ↓p is well-typed and Mi

term!−→ M ′
i . Besides

by Lemma 1, there exists a substitution for placeholder-terms σ and an open type
inference derivation whose open leaves are the � � Γ ′

i � Δ′
i with σΓ ′

i = Γi and
σΔ′

i = Δi for all i and whose conclusion is C � Γ � a : ϕ, Δ′. By Lemma 9, this
open type inference derivation can be turned into one with open leaves � � Γ ′

i ↓p�
Δ′

i ↓p and with conclusion C ↓p �Γ ↓p� a : ϕ ↓p, Δ′ ↓p. Let us notice that for
all i and by Lemma 7, Γi ↓p= (σΓ ′

i ) ↓p= σ(Γ ′
i ↓p) and Δi ↓p= (σΔ′

i) ↓p=
σ(Δ′

i ↓p). Thus by Lemma 2, σC ↓p [(M ′
i)i] � σ(Γ ↓p) � a : σ(ϕ ↓p), σ(Δ′ ↓p)

is well-typed. Since σΓ ↓p= Γ ↓p, σϕ ↓p= ϕ ↓p and σΔ′ ↓p= Δ′ ↓p (Γ , ϕ
and Δ′ appear in a derivation in the super sequent calculus and therefore do not
contain placeholder-terms !) and since P ↓p= ϕ ↓p, this is a type inference of

σC ↓p [(M ′
i)i] � Γ ↓p� a : P ↓p, Δ′ ↓p. Finally as for all i, Mi

term!−→ M ′
i , then

M = RR(. . . , (. . . Mi)i, . . . , a)
term−→ σC[(Mi)i] = σC ↓p [(Mi)i]
term−→ σC ↓p [(M ′

i)i]

As this later term is a normal form, M
term!−→ σC ↓p [(M ′

i)i].
��

Corollary 3. term−→ is weakly normalising on well-typed extended terms. Moreover for
all M � Γ � Δ well-typed, M ↓t �Γ ↓p� Δ ↓p is well-typed in Urban’s type system.
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Proof. From Lemma 10. ��

Lemma 11. If M
excut−→ M ′, then M ↓t cut−→

+
M ′ ↓t.

Proof. Let us suppose first that the reduction M
excut−→ M ′ is done at the head of M . We

can distinguish two cases.

– if the reduction is a
cut−→ reduction, then M is a redex for the

cut−→ reduction. Let us
consider for instance the ∧ case. Thus M has the form

Cut(âAndR (̂bM1, ĉM2, a), x̂AndL(ŷẑN, x))

where AndR(̂bM1, ĉM2, a) and AndL(ŷẑN, x) freshly introduces a and x and M ′

may have the form

Cut(̂bM1, ŷCut(ĉM2, ẑN)) (case 1)

or the form
Cut(ĉM2, ẑCut(̂bM1, ŷN)) (case 2)

Then M ↓t is

Cut(âAndR (̂bM1 ↓t, ĉM2 ↓t, a), x̂AndL(ŷẑN ↓t, x))

where AndR (̂bM1 ↓t, ĉM2 ↓t, a) and AndL(ŷẑN ↓t, x) freshly introduces a and x
(Lemma 4) and reduces in one step into

Cut(̂bM1 ↓t, ŷCut(ĉM2 ↓t, ẑN ↓t))

and also into
Cut(ĉM2 ↓t, ẑCut(̂bM1 ↓t, ŷN ↓t))

The first is M ′ ↓t in case 1, the second is M ′ ↓t in case 2. So in both cases,

M ↓t cut−→
+

M ′ ↓t.
– If the reduction is a

cut−→ reduction, let us consider for instance the ∃ case. Thus M
has the form

Cut(âExistsR(̂bM, t, a), x̂ExistsL(ŷx̂N, x))

where ExistsR(̂bM, t, a) freshly introduces a and M ′ is

Cut(̂bM, ŷN [x := t])

Then M ↓t is

Cut(âExistsR(̂bM ↓t, t, a), x̂ExistsL(ŷx̂N ↓t, x))

where ExistsR(̂bM ↓t, t, a) freshly introduces a (Lemma 4) and reduces in one step
into

Cut(̂bM, ŷN ↓t [x := t])

By Corollary 1, N ↓t [x := t] = (N [x := t]) ↓t and we obtain that the later
one-step reduct of M ↓t is in fact M ′ ↓t.
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– If the reduction is a
cut−→ reduction, let us consider the case where M is

Cut(âM1, x̂M2)

with M1 does not freshly introduce a (the case where M2 does not freshly introduce
x is symmetrical) and M ′ is

M1[a := x̂M2]

Then M ↓t is
Cut(âM1 ↓t, x̂M2 ↓t)

and since M1 ↓t does not freshly introduce a (Lemma 4), we deduce that it reduces
to

M1 ↓t [a := x̂M2 ↓t]

As this later is a normal form and a reduct of M ′ for
term−→, it is M ′ ↓t.

– Other cases of
cut−→ reductions are similar.

– If the reduction is a
excut−→ reduction, then M is of the form

Cut(âRR(. . . , (. . . Mi)i, . . . , a), x̂RL(. . . , (. . . Nj)j , . . . , x))

with R : P → ϕ. Let us denote CR and CL respectively 〈|� a : ϕ |〉 and 〈| x : ϕ �|〉.
Thus we may write the following reduction in

term−→.

M = Cut(âRR((. . . Mi)i, a), x̂RL((. . . Nj)j , x))
term−→ Cut(âσCR[(Mi)i], x̂σ′CL[(Nj)j ])
term−→ Cut(âσCR[(Mi ↓t)i], x̂σ′CL[(Nj ↓t)j ])

where σ and σ′ are ad hoc placeholder-term substitutions. As this later term is a
normal form for

term−→, it is in fact M ↓t. Besides by definition of
excut−→, there exists

an open-term C such that Cut(âCR, x̂CL) cut−→
+

C with M ′ = σ′′C[M1, . . . , Np],

and thus M ′ ↓t= σ′′C[M1 ↓t, . . . , Np ↓t]. As Cut(âCR, x̂CL) cut−→
+

C, we de-

duce finally that M ↓t cut−→
+

M ′ ↓t.

Now let us suppose that the reduction M
excut−→ M ′ is done under some context. We

reason by induction on this context. We just treated the case of an empty context.

– Let us consider now for instance the case of RR. M is of the form
RR(. . . , (. . . , Mi)i, . . . , a) and M ′ is RR(. . . , (. . . , M ′

i)i, . . . , a) with some k such

that Mk
excut−→ M ′

k and for all i �= k, M ′
i =Mi. By induction hypothesis, Mk ↓t cut−→

+

M ′
k ↓t and then

M ↓t = σC[(Mi ↓t)i]
cut−→

+
σC[(M ′

i ↓t)i]
= M ′ ↓t
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– Let us consider now for instance the case of AndR. M is of the form
AndR (̂bM1, ĉM2, a) and M ′ is of the form AndR (̂bM ′

1, ĉM
′
2, a) with some i in

{1, 2} such that Mi
excut−→ M ′

i and Mk = M ′
k for k �= i. By induction hypothesis,

Mi ↓t cut−→
+

M ′
i ↓t and thus

M ↓t = AndR(̂bM1 ↓t, ĉM2 ↓t, a)
cut−→

+
AndR(̂bM ′

1 ↓t, ĉM ′
2 ↓t, a)

= M ′ ↓t

– Let us consider now for instance the case ExistsR. M is of the form
ExistsR (̂bM1, t, a) and M ′ is of the form ExistsR (̂bM ′

1, t, a) with M1
excut−→ M ′

1. By

induction hypothesis, M1 ↓t cut−→
+

M ′
1 ↓t and thus

M ↓t = ExistsR (̂bM1 ↓t, t, a)
cut−→

+
ExistsR (̂bM ′

1 ↓t, t, a)
= M ′ ↓t

– Let us consider now for instance the case ExistsL. M is of the form
ExistsL(ŷx̂M1, x) and M ′ is ExistsL(ŷx̂M ′

1, x) with M1
excut−→ M ′

1. By induction

hypothesis, M1 ↓t cut−→
+

M ′
1 ↓t and thus

M ↓t = ExistsL(ŷx̂M1 ↓t, x)
cut−→ ExistsL(ŷx̂M ′

1 ↓t, x)
= M ′ ↓t

– Other cases are similar.
��

Now we can prove the main result:

Theorem 2 (Strong Normalisation). If the set of proposition rewrite rules satisfies
Hypothesis 1, then

excut−→ is strongly normalising on well-typed extended terms.

Proof. Let us suppose that
prop−→ is convergent. Let M � Γ � Δ be some well-typed

extended term. Let us suppose that there exists an infinite reduction

M = M0
excut−→ M1

excut−→ M2 . . .

First by Corollary 3,
term−→ is weakly normalising and M ↓t �Γ ↓p� Δ ↓p. Besides by

Lemma 11, there is an infinite reduction

M ↓t= M0 ↓t cut−→
+

M1 ↓t cut−→
+

M2 ↓t . . .

This is impossible since M ↓t is well-typed in Urban’s calculus and
cut−→ is strongly

normalising on well-typed terms [Urb00]. ��
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5 Conclusion

We have motivated and presented superdeduction, a powerful systematic way of ex-
tending deduction systems with rules derived from an axiomatic theory. First, we have
presented its application to classical sequent calculus along with its properties. After
having exhibited a proof-term language associated with this deduction system along
with a cut-elimination procedure, we have shown in details its strong normalisation un-
der non-trivial hypothesis, therefore ensuring the consistency of a large class of theories,
as well as of the corresponding instances of the system. We have shown on significa-
tive examples including higher-order logic, induction and equality why superdeduction
could be a grounding framework for a new generation of interactive proof environments.
A prototype of this framework, lemuridæ, has been presented and can be actually down-
loaded.

The very promising results obtained when using lemuridæ, first in term of proof dis-
covery agility and second in the close relationship between human constructed proofs
and superdeduction ones, are all very encouraging and trigger the further development
of the concepts and implementation. This leads to new questions, since, as seen in Sec-
tion 3, the behavior of superdeduction systems with propositions considered modulo a
congruence is important to study now in details. This will for instance allow building
proofs modulo the symmetry of equality. Another promising point of further research is
program extraction from lemuridæ proof-terms along with a computational interpreta-
tion of extended deduction rules. We anticipate the extracted programs to have modular
structures inherited from the superdeduction proof.

The link, studied in [BDW07], between supernatural deduction (e.g. superdeduction
applied to natural deduction) and natural deduction modulo, shows the equivalence be-
tween strong normalisation of cut elimination in supernatural deduction and in natural
deduction modulo for the implicational fragment of predicate logic. The links between
cut elimination in superdeduction and deduction modulo for the sequent calculus have
still to be worked out. However, we already can import theories expressed by propo-
sition rewrite rules for deduction modulo to super sequent calculus systems. This is in
particular the case of Peano’s arithmetic [DW05], but also of Zermelo-Frænkel axiom-
atization of set theory [DM07].

Finally, let us stress out the recent encoding of pure types systems in λΠ-calculus
modulo [CD07]. Indeed, since recent works by G. Burel show that the λΠ-calculus can
be naturally encoded in the super sequent calculus, this globally confirms the legitimacy
of superdeduction as a foundation for high-level proof assistants. It opens also new
questions on the global architecture of proof systems as well as on the interaction with
users, either humans or programs.

Acknowledgments. Many thanks to Benjamin Wack for inspiring discussions and his
seminal work on this topics, to Horatiu Cirstea for his detailed and crisp comments on
previous version this work, to Dan Dougherty for helpful discussions, to the Modulo
meetings and the Protheo team for many interactions.
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Abstract. The purpose of this note is to give a demonstration of the
completeness theorem of type assignment system for λ-terms of [Hindley
83] and [Coquand 05] with two directions of slight extensions. Firstly,
using the idea of [Okada 96], [Okada-Terui 99] and [Hermant-Okada 07],
we extend their completeness theorem to a stronger form which implies
a normal form theorem. Secondly, we extend the simple type (the impli-
cational fragment of intuitionistic logic) framework of [Hindley 83] and
[Coquand 05] to a linear (affine) types (the {−◦, &,→}-fragment of affine
logic) framework of [Laird 03, 05].

1 Introduction

Using the traditional Tarskian or Kripke model, Hindley [1983] and Coquand
[2005] showed completeness at the level of “proof-terms” (λ-terms), in place of
the traditional completeness for “provability,” with the implicational fragment of
intuitionistic logic. Compared with some recent works on full completeness and
full abstraction employing Scott-Plotkin’s denotational semantics or game se-
mantics (e.g., [O’Hearn-Riecke 95], [Hyland-Ong 00]), their completeness proofs
can be considered natural extensions of traditional completeness proofs for prov-
ability. On the other hand, in our previous work [Okada 96, 02] and [Okada-Terui
99], we remarked that a slight change in the phase semantic completeness proof
of [Girard 87] leads to the cut-elimination theorem (or, existence theorem of a
normal proof) for “provability.” In this note we combine these two ideas to show
that a slight change in the setting of Hindley-Coquand’s semantic completeness
proof for “proof-terms” leads to the normal form theorem for “proof-terms.” We
demonstrate this for Laird’s dual affine/intuitionistic λ-calculus.
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Girard proved, in his completeness proof in [Girard 87] at the level of prov-
ability, a lemma of the form

A∗ = [[A]],

where A∗ (called the inner-value of A in [Okada 02]) is the interpretation of a
formula A in the canonical model, and [[A]] = {Γ | Γ � A is provable} (called the
outer-value). We remarked in [Okada 96], [Okada-Terui 99] (cf. also [Hermant-
Okada 07] for higher order cases) that the cut-elimination theorem can be ob-
tained by changing this lemma slightly into the following form:

A ∈ A∗ ⊆ [[A]],

where [[A]] = {Γ | Γ � A is provable without the cut-rule }. Indeed, the com-
pleteness proofs for “proof-terms” in [Hindley 83] and [Coquand 05] use the same
form A∗ = [[A]] as in [Girard 87], where A∗ and [[A]] are adapted to a seman-
tics for “proof-terms.” We shall remark in this note that a modification of the
lemma similar to [Okada 96, 02] and [Okada-Terui 99] can show the normal form
theorems for “proof-terms,” with a suitable change in the definition of [[A]].

As was mentioned above, we also extend completeness of [Hindley 83] and [Co-
quand 05] for the simple type (the implicational fragment of intuitionistic logic)
framework to a linear (affine) types (the {−◦, &,→}-fragment of affine logic)
framework. In order to do this, we consider dual affine/intuitionistic λ-calculus
(λAff) of [Laird 05, 03], which is a fragment of Dual Intuitionistic Linear Logic
(DILL) of Barber and Plotkin (see [Barber 96]). Based on the linear types of the
forms A−◦B and A & B, λAff has a part of the exponential as the intuitionistic
function type of the form A → B, which corresponds to !A −◦ B with the ex-
ponential !. (Hasegawa [2002b] also considers a similar system in the framework
of classical logic.) In [Laird 05, 03], λAff is introduced as a target language of
Continuation-Passing-Style (CPS) translation of simple types of the call-by-value
λ-calculus. Introducing game semantics for λAff , Laird gives a semantic analysis
of λAff and CPS translation. CPS translation is developed as an evaluation-order
independent λ-encoding of λ-terms (see [Plotkin 75], [Fischer 93] etc.). Although
the standard call-by-value CPS translation has been shown to be equationally
sound and complete, it is not full: there are inhabitants of the interpreted types
which are not in the image of the transformation. (See [Hasegawa 02a].) Using
game semantics, Laird showed the fullness of CPS translation by adopting λAff

as the target language.
Our completeness proof for “proof-terms” could be understood as a variant

of the well-known Tait-Girard’s computability/reducibility argument of proof-
terms normalization.

The rest of this note is organized as follows. In Section 2, we mainly concern
ourselves with the level of “provability” of Laird’s dual affine/intuitionistic λ-
calculus (λAff) ([Laird 05, 03]) and its phase semantics. In Section 3, we first
review the type assignment system of Laird’s λAff , and then we introduce phase
semantics for proof-terms of this system. We prove, in Section 4, the soundness
and the completeness theorems of λAff . Using completeness, we show a normal
form theorem of λAff .
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2 Phase Semantics for the Provability of λAff

In this section, we first briefly review the logic of Laird’s dual affine/intuitionistic
λ-calculus (λAff) ([Laird 05, 03]). Then we introduce phase semantics for the
provability of this system for the preparation of phase semantics for proof-terms,
which will be developed in Section 3.2.

λAff takes dual contexts of linear and non-linear in the style of Barber-
Plotkin’s Dual Intuitionistic Linear Logic (DILL) (see [Barber 96]). A sequent
in this system has the form Φ ; Γ � A, where Φ is a set of formulas (types) called
“intuitionistic context”, and Γ is a multiset of formulas (types) called “linear
context”, with A a formula (type). The symbol “ ; ” is used to distinguish an
intuitionistic context and a linear context. We call Φ ; Γ a dual context. We
write ∅ for the empty sequent.

Syntactical notions such as formulas (types) and contexts of λAff are defined
as the type assignment system for λ-terms in Section 3.1, and we only indicate
the inference rules in Table 1 in this section.

Table 1. Inference rules of λAff

Φ ; Γ, A � A
ax

Φ ; Γ, A � B

Φ, A ; Γ � B
der

Φ ; Γ, A � B

Φ ; Γ � A −◦ B
−◦I

Φ ; Γ � A −◦ B Φ ; Δ � A

Φ ; Γ, Δ � B
−◦E

Φ, A ; Γ � B

Φ ; Γ � A → B
→ I

Φ ; Γ � A → B Φ ; ∅ � A

Φ ; Γ � B
→ E

Φ ; Γ � A Φ ; Γ � B

Φ ; Γ � A & B
&I

Φ ; Γ � A1 & A2

Φ ; Γ � Ai
&Ei

i = 1, 2

We introduce phase semantics for the provability of λAff . First for compar-
ison, we briefly recall operations of usual phase semantics for the provability.
See [Okada 02] for details. Phase semantics for the provability of the {−◦, &}-
fragment of intuitionistic linear logic is based on commutative monoid M and
the following operations: For any α, β ⊆ M ,

- α−◦ β = {m | for any n ∈ α, m · n ∈ β},
- α & β = α ∩ β.

We now introduce phase semantics for the provability of λAff , based on in-
tuitionistic phase semantics of [Okada 02]. See also [Okada-Terui 99] on phase
semantics for affine logic.

Definition 1 (Phase space for the provability). A phase space M for the
provability of λAff is defined as follows.
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• Start with a structure (M, �, ·, ε) where M is a set equipped with two binary
commutative associative operators � and · which share the same unit ε, and such
that � is also idempotent. Then the phase space which is used is the set of subsets
of M = (M, �, ε)× (M, ·, ε) with the following operations for any α, β ⊆M. We
denote an element of M as (n ; l) instead of (n, l).

- α−◦ β = {(n ; l) | for any (n′ ; l′) ∈ α, (n � n′ ; l · l′) ∈ β}
- α → β = {(n ; l) | for any (n′ ; ε) ∈ α, (n � n′ ; l) ∈ β}
- α & β = α ∩ β.

• α ⊆M is called closed if it satisfies the following monotonicity condition:

(Monotonicity) If (n ; l · l′) ∈ α, then (n � l′ � m ; l · k) ∈ α for any m, k ∈ M .

This condition is a combination of Weakening and Dereliction (der-rule).

Definition 2 (Phase model for the provability). A phase model (M, ∗)
for the provability of λAff consists of a phase space M for the provability and
an interpretation function ∗ from the set of atoms to the set of closed sets
of M.

We write l for l1 · · · · · lk in a linear context, and n for n1 � · · · � nl and m for
m1 � · · · � mk in an intuitionistic context.

Definition 3 (Interpretation of sequents)
A sequent C1, . . . , Cl ; D1, . . . , Dk�A is true (denoted as C1, . . . , Cl ; D1, . . . , Dk

|= A) in a phase model (M, ∗) for the provability of λAff , if, for any (ni ; ε) ∈ C∗
i

and (mj ; lj) ∈ D∗
j , we have (n � m ; l) ∈ A∗.

In the above definition of phase semantics, if we define an order relation in a
monoid as m ≤ n iff ∃l(m · l = n), then we obtain a linear (affine) Kripke se-
mantics naturally (see [Okada 04]). Hence our framework can be also considered
as a framework of Kripke semantics as [Coquand 05].

Using the method of [Okada 96, 02] and [Okada-Terui 99], we have complete-
ness of λAff with respect to phase semantics for the provability. We shall also
show that these theorems are obtained by proofs for corresponding theorems in
Section 4.

Theorem 1 (Soundness for the provability)
If C1, . . . , Cl ; D1, . . . , Dk � A is provable in λAff , then C1, . . . , Cl ; D1, . . . , Dk |= A

in any phase model for the provability of λAff .

In order to show completeness for the provability of λAff , we construct a canonical
model (MS , ∗) as follows. See Section 4.2 for the detail.

• MS is the set of dual contexts, where binary operators � and · are “ , ” in
intuitionistic contexts (set-union) and “ , ” in linear contexts (multiset-union),
respectively, and the unit is the empty sequent ∅.
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• On this set, we consider the following outer-value:

- [[A]] = {Φ ; Γ | Φ ; Γ � A is provable with a normal proof }

• We define an interpretation function ∗ as X∗ = [[X ]].

Then we have the following main lemma by the induction on the complexity
of A as [Okada 96, 02]. See Section 4.2 for the detail.

Lemma 1 (Main lemma). In (MS , ∗), for any type A,

(∅ ; A) ∈ A∗ ⊆ [[A]].

The following completeness is a direct consequence of the main lemma.

Theorem 2 (Completeness for the provability)
If C1, . . . , Cl ; D1, . . . , Dk |= A in any phase model for the provability of λAff ,
then C1, . . . , Cl ; D1, . . . , Dk � A is provable with a normal proof in λAff .

Then with the soundness theorem, the following normal form theorem is ob-
tained.

Theorem 3 (Normal form theorem for λAff)
If C1, . . . , Cl ; D1, . . . , Dk � A is provable in λAff , then it is provable with a
normal proof.

3 Phase Semantics for Proof-Terms of λAff

In this section, we review the type assignment system of Laird’s dual
affine/intuitionistic λ-calculus (λAff) ([Laird 05, 03]), and we introduce phase
semantics for proof-terms of this system.

3.1 Type Assignment System for λAff

Although Barber [1996] and others, who study DILL or linear CPS-translation,
introduce the linear λ-terms, we take, following [Laird 05, 03], the usual (non
linear) untyped λ-terms with pairs for λAff : Variables x, y, z, . . .; abstraction
λx.s; application (st); pair 〈s, t〉; and projection π1(s), π2(s).

We write s[x := t] for the substitution of a λ-term t for the free occurrences
of x in a λ-term s.

Definition 4 (Types). The linear types of λAff is defined as follows:

- Atomic types X, Y, . . . , X1, X2, . . . are types.
- If A and B are types, then A−◦B, A→ B and A & B are also types.

We now define the type assignment rules of Laird’s λAff .
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Definition 5 (Type asignment rules)

- A declaration (assumption) is of the form x: A with a variable x and a type A.
- A dual context is of the form y1: C1, . . . , yl: Cl ; x1: D1, . . . , xk: Dk where the
left of “ ; ” (y1: C1, . . . , yl: Cl) is a finite set of declarations called an “intuition-
istic context” and the right of “ ; ” (x1: D1, . . . , xk: Dk) is a finite multiset of
declarations called a “linear context”. We write Φ, Ψ, . . . for any intuitionistic
contexts and Γ, Δ, . . . for any linear contexts. We write ∅ for the empty context.
- A λ-term s is typable as type A if a sequent Φ ; Γ � s: A is derivable for some
dual context Φ ; Γ by the type assignment rules of Table 2.

Table 2. Type assignment rules of λAff

Φ ; Γ, x: A � x:A
ax

Φ ; Γ, x: A � s: B

Φ, x:A ; Γ � s: B
der

Φ ; Γ, x: A � s: B

Φ ; Γ � λx.s: A −◦ B
−◦I

where s contains at most one
free occurrence of x.

Φ ; Γ � s: A −◦ B Φ ; Δ � t: A

Φ ; Γ, Δ � (st):B
−◦E

Φ, x: A ; Γ � s: B

Φ ; Γ � λx.s: A → B
→ I

Φ ; Γ � s: A → B Φ ; ∅ � t: A

Φ ; Γ � (st):B
→ E

Φ ; Γ � s:A Φ ; Γ � t:B

Φ ; Γ � 〈s, t〉:A & B
&I

Φ ; Γ � s:A1 & A2

Φ ; Γ � πi(s): Ai
&Ei

i = 1, 2

We introduce the βη-equality relation )βη on λ-terms as the usual conversion
relation, see [Hindley-Seldin 86], [Barendregt 92]. A λ-term is in normal form,
if it contains no redex of the form (λx.st), πi(〈s, t〉) for i = 1 and 2, λx.(sx) for
x �∈ FV (s), or 〈π1(s), π2(s)〉, where FV (s) means the set of free variables of the
λ-term s.

Note that there is a slight difference between our λAff and Barber-Plotkin’s
DILL-style λAff . In DILL-style λAff , it is assumed that Φ and Γ are disjoint in
a dual context Φ ; Γ , and further that Γ and Δ are disjoint in a linear context
Γ, Δ. (See [Barber 96].) In our λAff , in place of this assumption, we assume that
−◦I-rule of Table 2 is applicable when s contains at most one free occurrence of
x. This change does not affect the type assignment system of λAff , which can be
stated in Proposition 1 bellow.

Note first that, if a sequent Φ ; Γ � s: A is derivable in DILL-style λAff ,
then the variables of the linear context Γ occur at most once in s due to the
assumption of disjointness of linear contexts (see [Barber 96]). Hence −◦I-rule
of DILL-style system satisfies the restriction of −◦I-rule of our λAff .

On the other hand, the following proposition means that any derivation of
our λAff can be simulated in DILL-style λAff by considering duplicated
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formulas in a linear context of our λAff as an intuitionistic assumption of
DILL-style λAff .

Proposition 1 (Simulation). Let �xi: Ai be a sequence xi: Ai, . . . , xi: Ai of the
same assumptions. Assume that no variable appears twice in a sequence of as-
sumptions Φ, Γ, x1: A1, . . . , xn: An. For 0 ≤ k ≤ n,
if Φ, x1: A1, . . . , xk: Ak ; Γ, �x1: A1, . . . , �xn: An � s: B is derivable in our λAff , then
Φ, x1: A1, . . . , xn: An ; Γ � s: B is derivable in DILL-style λAff .

This proposition is obtained by the following lemma of DILL-style λAff .

Lemma 2 (Environment strengthening (Cf. [?]))
If Φ, x: A ; Γ � s: B is derivable in DILL-style λAff and s contains at most one
free occurrence of x, then Φ ; Γ, x: A � s: B is derivable in DILL-style λAff .

Let us consider the following example of an application of −◦I
Φ ; Γ, x: A, x: A � s: B

Φ ; Γ, x: A � λx.s: A−◦B
−◦I in our λAff .

For simplicity, we assume that no variable other than x occurs twice in the dual
context.

This form of −◦I-rule is simulated by DILL-style λAff as follows: First we
consider the duplicated assumptions (x: A, x: A) in the linear context of the upper
sequent as an intuitionistic assumption as

Φ, x: A ; Γ � s: B

in DILL-style λAff . Note that by the definition of −◦I-rule of our λAff , the λ-
term s contains at most one free occurrence of x. Hence by Lemma 2, we have
Φ ; Γ, x: A � s: B. Thus by applying −◦I-rule of DILL-style λAff , we have the
following derivation:

Φ ; Γ, x: A � s: B
Φ ; Γ � λx.s: A−◦B

−◦I in DILL-style λAff .

Then by Weakening (cf. [Barber 96]) we have Φ, x: A ; Γ � λx.s: A −◦ B in
DILL-style λAff .

3.2 Phase Semantics for Proof-Terms of λAff

In this subsection, we introduce phase semantics for proof-terms of λAff . The
domain of our model consists of untyped λ-terms with dual contexts, which
corresponds to [Coquand 05]’s model. The operations −◦,→ and & are based
on the −◦,→ elimination rules and the set theoretical intersection operation,
which are natural extensions of those operations of phase semantics for the prov-
ability of λAff (Definition 1). The following phase space for proof-terms is ob-
tained by augmenting proof-terms (λ-terms) to a phase space for the provability
of λAff .
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Definition 6 (Phase space for proof-terms). A phase space for proof-terms
of λAff is (M,P) where

• M is a phase space for the provability of λAff .

• P = {((n ; l), s) | (n ; l) ∈ M and s is a λ-term}.
We write (n ; l � s) for ((n ; l), s).

There are the following operations for any α, β ⊆ P :

- α−◦β = {(n ; l�s) | for any (n′ ; l′� t) ∈ α, (n�n′ ; l · l′�(st)) ∈ β}
- α → β = {(n ; l � s) | for any (n′ ; ε � t) ∈ α, (n � n′ ; l � (st)) ∈ β}
- α & β = π1(α) ∩ π2(β),

where πi(α) = {(n ; l � s) | (n ; l � πi(s)) ∈ α} for i = 1, 2.

• We call α ⊆ P closed if it satisfies the following equality-closed and monotonic-
ity conditions:
(Equality-closed) If t )βη s and (n ; l � s) ∈ α, then (n ; l � t) ∈ α;
(Monotonicity) If (n ; l · l′ � s) ∈ α, then (n � m � l′ ; l · k � s) ∈ α for any

m, k ∈M .

These two conditions are collectively called the closure condition.

Note that, in the above definition of phase space for proof-terms of λAff , if
we forget λ-terms (proof-terms), then (1) P coincides with M, (2) operations
{−◦,→, &} exactly correspond to those of Definition 1 of phase space for the
provability of λAff , and (3) only monotonicity remains as the closure condition.
Hence a phase space for the provability is obtained by forgetting λ-terms of a
phase space for proof-terms.

It is easily shown that the closure condition is preserved under {−◦,→, &}-
operations.

Lemma 3. For any α, β ⊆ P, if β is closed then α−◦ β and α→ β are closed;
if α and β are closed then α & β is closed.

Definition 7 (Phase model for proof-terms). A phase model (M,P , ∗) for
proof-terms of λAff consists of

• a phase space (M,P) for proof-terms of λAff ;
• an interpretation function ∗ form the set of atomic types to the set of closed
sets of (M,P) such that
(A−◦B)∗ = A∗ −◦B∗, (A → B)∗ = A∗ → B∗, (A & B)∗ = A∗ & B∗.

Note that any interpretation A∗ of a type is closed from Lemma 3.

Notation: We write s[t, s] for s[y1 := t1, . . . , yl := tl, x1 := s1, . . . , xk := sk]. We
also write l for l1 · · · · · lk in a linear context, and n for n1 � · · · � nl and m for
m1 � · · · � mk in an intuitionistic context.

Definition 8 (Interpretation of sequents)
A sequent y1: C1, . . . , yl: Cl ; x1: D1, . . . , xk: Dk � s: A is true (denoted as
y1: C1, . . . , yl: Cl ; x1: D1, . . . , xk: Dk |= s: A) in a phase model (M,P , ∗) for
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proof-terms of λAff , if, for any (ni ; ε � ti) ∈ C∗
i and (mj ; lj � sj) ∈ D∗

j , we
have (n � m ; l � s[t, s]) ∈ A∗.

4 Soundness and Completeness of λAff

In this section, we prove the soundness and the completeness theorems. Our
proof below is an extension of the completeness proof in [Okada 96, 02] for phase
semantics for the provability of intuitionistic linear logic. Using completeness, we
show a normal form theorem of λAff : if a λ-term s is typable in λAff , then there
is a λ-term t in normal form such that s )βη t .

By the following completeness proof for proof-terms (λ-terms), we obtain
completeness for the provability if we ignore the part related to λ-terms.

4.1 Soundness Theorem

We first show the soundness theorem.

Theorem 4 (Soundness for proof-terms)
If y1: C1, . . . , yl: Cl ; x1: D1, . . . , xk: Dk � s: A is derivable in λAff , then
y1: C1, . . . , yl: Cl ; x1: D1, . . . , xk: Dk |= s: A in any phase model for proof-terms
of λAff .

Proof. By induction on the construction of derivation. As for elimination rules,
the assertion is more or less immediate by the induction hypothesis since the
corresponding operations in our phase model are defined based on the elimination
rules. Further, since → E-rule is a particular case of −◦I-rule, it is treated by
the same way as −◦I case. Thus we show only for −◦I and &I rules.

In the following, Φ denotes y1: C1, . . . , yl: Cl, and Γ denotes x1: D1, . . . , xk: Dk.

Case
Φ ; Γ, x: A � s: B

Φ ; Γ � λx.s: A −◦B
−◦I.

Let (ni ; ε � ti) ∈ C∗
i and (mj ; lj � sj) ∈ D∗

j for each 1 ≤ i ≤ l and
1 ≤ j ≤ k. Then by the induction hypothesis, for any (n ; l � u) ∈ A∗, we have
(n � m � n ; l · l � s[t, s, x := u]) ∈ B∗. Since B∗ is closed, we have (n � m � n ;
l·l�(λx.su)[t, s]) ∈ B∗. That is (n�m ; l�λx.s[t, s]) ∈ A∗−◦B∗ by the definition
of −◦.

Case
Φ ; Γ � s: A Φ ; Γ � t: B

Φ ; Γ � 〈s, t〉: A & B
&I.

Let (ni ; ε � ti) ∈ C∗
i and (mj ; lj � sj) ∈ D∗

j . Then by the induction
hypothesis, we have (n � m ; l � s[t, s]) ∈ A∗ and (n � m ; l � t[t, s]) ∈ B∗.
Since both A∗ and B∗ are closed, we have (n � m ; l � π1〈s, t〉[t, s]) ∈ A∗ and
(n�m ; l�π2〈s, t〉[t, s]) ∈ B∗. Thus, from the definition of &, we have (n�m ; l�
〈s, t〉[t, s]) ∈ A∗ & B∗.

Note that the soundness theorem (Theorem 1) for the provability is a direct
corollary of this soundness theorem for proof-terms.
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4.2 Completeness Theorem

In this subsection, we present the completeness theorem. For the sake of a normal
form theorem, we consider the following form of main lemma for completeness:

(∅ ; x: A � x) ∈ A∗ ⊆ [[A]]

for any variable x and any type A, where A∗ is the interpretation of A in the
canonical model, and [[A]] = {(Φ ; Γ � s) | Φ ; Γ � s: A and there is t in normal
form such that s )βη t} (called the outer-value of A). This is a modification of
the lemma of [Coquand 05] following the method of [Okada 96, 02].

In order to show completeness of λAff , we add the following equality-rule:

Φ ; Γ � s : A s )βη t

Φ ; Γ � t: A
eq

This type of equality-rule is used in [Hindley 83] and [Coquand 05] to show com-
pleteness.

Now we construct a canonical model (MS ,PS , ∗) as follows.

• MS is the set of dual contexts, where binary operators � and · are “ , ” in
intuitionistic contexts (set-union) and “ , ” in linear contexts (multiset-union),
respectively, and the unit is the empty sequent ∅.
• PS = {(Φ ; Γ � s) | (Φ ; Γ ) ∈MS and s is a λ-term }.
• On this set, we consider the following outer-value:

- [[A]] = {(Φ ; Γ � s) | Φ ; Γ � s: A and there is t in normal form such that s βη t}.

• Then we define an interpretation function ∗ as X∗ = [[X ]].

Note that we can define another outer-value as [[A]]T = {(Φ ; Γ � s) | Φ ; Γ �
s: A} without referring any normal form nor equality relation on λ-terms. The
completeness theorem of [Coquand 05] is obtained by this outer-value.

The above construction indeed produces a phase model for proof-terms.

Lemma 4. (MS ,PS , ∗) is a phase model for proof-terms of λAff .

Now we prove the following main lemma for our completeness theorem.

Lemma 5 (Main lemma). In MS, for any variable x and any type A,

(∅ ; x: A � x) ∈ A∗ ⊆ [[A]].
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Proof. In order to prove this lemma, we first introduce the following meta ex-
pression for a type and a λ-term.

For any type B1, . . . , Bn, we first define, by the induction on n, a meta ex-
pression E(B1, . . . , Bn) of a type as follows:

(n = 1) E(B1) means B1;
(n > 1) E(B1, . . . , Bn) means one of the followings;

- E(B1, . . . , Bn−2, (Bn−1 −◦Bn)) or;
- E(B1, . . . , Bn−2, (Bn−1 → Bn)) or;
- E(B1, . . . , Bn−2, (Bn & Bn−1)) or;
- E(B1, . . . , Bn−2, (Bn−1 & Bn)).

Next, for any term s1, . . . , sn which have types B1, . . . , Bn respectively, we
introduce a meta expression E(sn, s1, . . . , sn−1) of a λ-term, which depends on
the form of a type E(B1, . . . , Bn) as follows:
E(sn) is sn;
E(sn, s1, . . . , sn−1) is one of the following:

- an application (E(sn, s1, . . . , sn−2)sn−1)
if E(B1, . . . , Bn−1, Bn) is E(B1, . . . , (Bn−1 −◦ Bn)) or E(B1, . . . , (Bn−1 → Bn));

- a projection π1(E(sn, s1, . . . , sn−2))
if E(B1, . . . , Bn−1, Bn) is E(B1, . . . , (Bn & Bn−1));

- a projection π2(E(sn, s1, . . . , sn−2))
if E(B1, . . . , Bn−1, Bn) is E(B1, . . . , (Bn−1 & Bn)).

If we consider only {−◦,→}-fragment, then a λ-term E(x, s1, . . . , sn) is just
an application (· · · (xs1) · · · sn), and from a proof-theoretical point of view, it
correspond to a proof structure whose main branch consists only of {−◦,→}-
elimination rules. (Cf. [Martin-Löf 71].)

Then we prove, by induction on the complexity of A, the conjunction of the
following two statements (1) and (2), which is a generalized form of the main
lemma.

(1) A∗ ⊆ [[A]];
(2) For any type E(B1, . . . , Bn, A),

if (Φ ; Γi � si) ∈ [[Bi]] for any i ≤ n such that E(B1, . . . , Bi−1, (Bi −◦ D)); and
if (Φ ; ∅� sj) ∈ [[Bj ]] for any j ≤ n such that E(B1, . . . , Bj−1, (Bj → D)),
then we have (Φ ; �Γi, x: E(B1, . . . , Bn, A) � E(x, s1, . . . , sn)) ∈ A∗,
where �Γi is a sequence of contexts appearing in the premise of the statement.

In particular, we have (∅ ; x: A � x) ∈ A∗ from the case n = 0 of (2).

We write E( �Bn, A) for the type E(B1, . . . , Bn, A), and write E(x, �sn) for the
λ-term E(x, s1, . . . , sn).

(Case A ≡ X)
(1) X∗ ⊆ [[X ]] is obvious from the definition.
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(2) By the assumption we have Φ ; Γi � si: Bi for each i and Φ ; ∅ � sj : Bj for
each j, hence from the axiom of the form

Φ ; x: E( �Bn, X) � x: E( �Bn, X)
ax

,

by applying n-times of the following form of elimination rules:

Φ ; �Γl, x: E( �Bn, X) � E(x, �si) : Bi+1 ⇒ E(Bi+2, . . . , Bn, X) Φ ; Γi+1 � si+1: Bi+1

Φ ; �Γl, Γi+1, x:E( �Bn, X) � (E(x, �si)si+1): E(Bi+2, . . . , Bn, X)
⇒ E

where ⇒ is −◦ or →, and Γi+1 is ∅ if ⇒ is →,
or

Φ ; �Γl, x: E( �Bn, X) � E(x, �si): E(Bi+2, . . . , Bn, X) & Bi+1

Φ ; �Γl, x:E( �Bn, X) � π1(E(x, �si)): E(Bi+2, . . . , Bn, X)
&E1

similar for &E2,

we obtain Φ ; �Γi, x: E( �Bn, X) � E(x, �sn): X .
On the other hand there are λ-terms u1, . . . , un in normal forms such that sk )

uk for each 1 ≤ k ≤ n by the assumption. Hence we have E(x, s1, . . . , sn) )βη

E(x, u1, . . . , un) where E(x, u1, . . . , un) is in normal form.
Thus we obtain (Φ ; �Γi, x: E( �Bn, X) � E(x, s1, . . . , sn)) ∈ [[X ]] = X∗.

(Case A ≡ B −◦ C)
(1) We show B∗ −◦ C∗ ⊆ [[B −◦ C]]. Let (Φ ; Γ � s) ∈ B∗ −◦ C∗. Then for
any (Ψ ; Δ � t) ∈ B∗, we have (Φ, Ψ ; Γ, Δ � (st)) ∈ C∗. Since we have
(∅ ; x: B � x) ∈ B∗ for any x by the induction hypothesis on B of the case
n = 0, we have (Φ ; Γ, x: B � (sx)) ∈ C∗ for x �∈ FV (s). Then by the induction
hypothesis on C, we have Φ ; Γ, x: B � (sx): C and there is u in normal form
such that (sx) )βη u. Then by applying the following −◦I-rule

Φ ; Γ, x: B � (sx): C
Φ ; Γ � λx.(sx): B −◦C

−◦I
,

we have Φ ; Γ � λx.(sx): B −◦ C and λx.(sx) )βη λx.u.
Note that λx.u is not necessarily in normal form even if u is in normal form.

Thus we divide the following two cases depending on u.
(i) If u is of the form (vx), then we have s )η λx.(sx) ) λx.u ≡ λx.(vx) )η v.
Note that v is in normal form since u is in normal form, and that we have
Φ ; Γ � s: B by the equality-rule.
(ii) If otherwise, λx.u is in normal form since u is in normal form. Hence from
(sx) ) u, we have s )η λx.(sx) ) λx.u, and we have Φ ; Γ � s: B by the
equality-rule.
Hence in either case, we have (Φ ; Γ � s) ∈ [[B −◦ C]].

(2) We show that for any (Φ ; Γ � t) ∈ B∗, we have (Φ ; �Γi, Γ, x: E(B1, . . . , Bn,

(B −◦ C)) �(E(x, s1, . . . , sn)t)) ∈ C∗. ¿From the assumption (Φ ; Γ � t) ∈ B∗, we
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have (Φ ; Γ � t) ∈ [[B]] by the induction hypothesis on B. Since E(B1, . . . , Bn,
(B −◦ C)) is expressed as E(B1, . . . , Bn, B, C) and (E(x, s1, . . . , sn)t) is
E(x, s1, . . . , sn, t), we have the assertion by the induction hypothesis on C.

(Case A ≡ B → C)
We omit a proof for this case since it is treated by the similar way as −◦.

(Case A ≡ B & C)
(1) We show B∗ & C∗ ⊆ [[B & C]]. Let (Φ ; Γ � s) ∈ B∗ & C∗. Then we have
(Φ ; Γ �π1(s)) ∈ B∗ and (Φ ; Γ �π2(s)) ∈ C∗. Then by the induction hypothesis
on B and C respectively, we have Φ ; Γ � π1(s): B and there is u in normal form
such that π1(s) )βη u, and we have Φ ; Γ � π2(s): C and there is v in normal
form such that π2(s) )βη v. Thus by the following &I-rule

Φ ; Γ � π1(s): B Φ ; Γ � π2(s): C
Φ ; Γ � 〈π1(s), π2(s)〉: B & C

&I,

we have Φ ; Γ � 〈π1(s), π2(s)〉: B & C and 〈π1(s), π2(s)〉 )βη 〈u, v〉.
Thus we divide the following two cases depending on u and v.

(i) If u is of the form π1(t) and v is of the form π2(t), then we have s )η

〈π1(s), π2(s)〉 ) 〈u, v〉 ≡ 〈π1(t), π2(t)〉 )η t. Note that t is in normal form since
u and v are in normal forms, and that we have Φ ; Γ � s: B &C by the equality-
rule.
(ii) If otherwise, 〈u, v〉 is in normal form since u and v are in normal forms.
Hence from π1(s) ) u and π2(s) ) v, we have s )η 〈π1(s), π2(s)〉 ) 〈u, v〉, and
Φ ; Γ � s: B & C by the equality-rule.
Hence in either case, we have (Φ ; Γ � s) ∈ [[B & C]].

(2) We show that (Φ ; �Γi, x: E(B1, . . . , Bn, (B&C))�π1(E(x, s1, . . . , sn))) ∈ B∗

and (Φ ; �Γi, x: E(B1, . . . , Bn, (B & C)) � π2(E(x, s1, . . . , sn))) ∈ C∗.
Since E(B1, . . . , Bn, (B & C)) is expressed as E(B1, . . . , Bn, B, C) and

πi(E(x, s1, . . . , sn)) for i = 1, 2 are E(x, s1, . . . , sn, sn+1) respectively, we have
the assertion by the induction hypothesis on B and C respectively.

Assume that, for any (ni ; ε � ti) ∈ C∗
i and (mj ; lj � sj) ∈ D∗

j , we have
(n � m ; l � s[t, s]) ∈ A∗ in any phase mode for proof-terms. Then we have
(y1: C1, . . . , yl: Cl ; x1: D1, . . . , xk: Dk � s) ∈ A∗ in the canonical model, since
(yi: Ci ; ∅) ∈ C∗

i and (∅ ; xj : Dj) ∈ D∗
j for any Ci and Dj by the main

lemma and the monotonicity. Hence by the main lemma A∗ ⊆ [[A]], the se-
quent y1: C1, . . . , yl: Cl ; x1: D1, . . . , xk: Dk � s: A is derivable in λAff and there
is t in normal form such that s )βη t. Thus we obtain the following completeness
theorem for proof-terms of λAff .

Theorem 5 (Completeness for proof-terms)
If y1: C1, . . . , yl: Cl ; x1: D1, . . . , xk: Dk |= s: A in any phase model for proof-
terms of λAff , then y1: C1, . . . , yl: Cl ; x1: D1, . . . , xk: Dk � s: A is derivable in
λAff , and there is t in normal form such that s )βη t.
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Note that the completeness theorem (Theorem 2) for provability is a direct
corollary of this completeness theorem for proof-terms.

If a λ-term s is typable in λAff , then by the soundness, the premise of the com-
pleteness is satisfied. Hence by the completeness, we have the following normal
form theorem of λAff .

Corollary 1 (Normal form theorem). If a λ-term s is typable in λAff , then
there is a λ-term t in normal form such that s )βη t.

5 Concluding Remarks

We remarked that the completeness theorem of type assignment system of [Co-
quand 05] in the simple type framework can be extended to a stronger form
which implies a normal form theorem in a linear (affine) types framework with
Laird’s dual affine/intuitionistic λ-calculus.

In order to prove completeness, we introduced, following [Hindley 83] and
[Coquand 05], an equality-rule. This equality-rule makes some usually untypable
λ-terms typable. It seems that this equality-rule is essential to prove complete-
ness in our framework of λAff which has η-rule for &, since the subject reduction
property fails for this reduction. We remark that, in the framework without &
nor η-rule, the following weaker form of completeness holds without having the
additional equality-rule: If (Γ � s) ∈ A∗ for any model, then there is a λ-term t
such that s ) t and Γ � t: A is derivable, which naturally implies completeness
at the level of the provability.

¿From the phase semantic point of view, the {−◦, &,→}-fragment of ILL is
complete with respect to intuitionistic phase semantics without any closure con-
dition, which is a generalization of the double negation operation ( )⊥⊥. Cf.
[Abrusci 90] and [Okada 02] for the phase semantic closure. Hence our closure
condition (the equality-closed and the monotonicity conditions) is not related
to the closure condition of intuitionistic phase semantics for the provability. As
future work, we investigate whether or not our closure condition in phase seman-
tics for proof-terms can be considered as an extension of the closure condition
of intuitionistic phase semantics for the provability.
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[Martin 71] Martin-Löf, P.: Hauptsatz for the intuitionistic theory of iterated inductive
definitions, In: Fenstad, J.E. (ed.) Proceedings of the Second Scandinabian Logic
Symposium, North-Holland, pp. 179–216 (1971)

[Mitchell 90] Mitchell, J.C.: Type Systems for Programming Languages, Handbook of
Theoretical Computer Science, vol. B, pp. 365–458 (1990)

[O’Hearn-Riecke] O’Hearn, P.W., Riecke, J.G.: Kripke Logical Relations and PCF.
Information and Computation 120(1), 107–116 (1995)

[Okada 96] Okada, M.: Phase semantics for higher order completeness, cut-elimination
and normalization proofs (Extended Abstract). Electronic Notes in Theoretical Com-
puter Science 3, 22 (1996)

[Okada 99] Okada, M.: Phase semantic cut-elimination and normalization proofs of
first- and higher-order linear logic. Theoretical Computer Science 227, 333–396
(1999)

[Okada 02] Okada, M.: A Uniform semantic proof for cut-elimination and completeness
of various first and higher order logics. Theoretical Computer Science 281, 471–498
(2002)

[Okada 04] Okada, M.: Intuitionistic logic and linear logic. La. revue internationale de
philosophie, special issue ”Intuitionism” 230, 449–481 (2004)

[Okada-Terui 99] Okada, M., Terui, K.: The Finite Model Property for Various Frag-
ments of Intuitionistic Linear Logic. Journal of Symbolic Logic 64, 790–802 (1999)

[Plotkin 75] Plotkin, G.D.: Call-by-Name, Call-by-Value and the lambda-Calculus.
Theoretical Computer Science 1(2), 125–159 (1975)



Linear Recursive Functions�

Sandra Alves1,

, Maribel Fernández2, Mário Florido1, and Ian Mackie3,
 
 


1 University of Porto, Department of Computer Science & LIACC, R. do Campo
Alegre 823, 4150-180, Porto, Portugal

2 King’s College London, Department of Computer Science, Strand, London
WC2R 2LS, UK
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Abstract. With the recent trend of analysing the process of computa-
tion through the linear logic looking glass, it is well understood that the
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is erased or copied) is Turing-complete.

Keywords: Recursion theory, linear calculi, iteration, computable
functions.

1 Introduction

In the definition of recursive functions, together with recursion, a key mechanism
in the process of computation is the ability for functions to duplicate and to
discard their arguments (i.e., management of resources: erase and copy). In this
paper we focus on this aspect of computation, which has attracted a great deal of
attention in recent years. We say that a function is linear if it uses its arguments
exactly once.

Primitive recursive functions, which we shall call PR, are a class of functions
which form an important building block on the way to a full formalisation of
computability. Intuitively speaking, (partial) recursive functions are those that
can be computed by some Turing machine. Primitive recursive functions can be
computed by a specific class of Turing machines that always halt. Many of the
functions normally studied in number theory, and approximations to real-valued
functions, are primitive recursive: addition, division, factorial, exponential, find-
ing the nth prime, and so on [9]. In fact, it is difficult to devise a function that
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is not primitive recursive; Ackermann’s function is a well-known example of a
non-primitive recursive function.

The class of PR functions is the least set including the zero, successor and
projection functions, and closed under the operations of composition and prim-
itive recursion. In the definition of PR, zero and successor give access to the
natural numbers and the projection functions are useful for erasing, copying and
permuting arguments. Copying and erasing (i.e., the ability for functions to du-
plicate and to discard their arguments) are key operations in the definition of all
interesting functions by primitive recursion, and in particular in the definition
of the two operations used to define PR itself: composition and the primitive
recursive scheme.

In this context the following question arises: can we define the class of prim-
itive recursive functions without explicitly relying on copying and erasing? In
this paper we show that the answer is yes; more precisely, we show that any
primitive recursive function can be defined using a syntactically linear system.
Furthermore, we show that any computable function can be defined using a
single minimisation operator and linear functions. This yields an alternative for-
mulation of the theory of recursive functions, where each function is linear; we
call this class of functions linear recursive functions.

To define linear primitive recursive functions, which we shall call LPR, we start
by specifying a set of linear initial functions (projections are not linear, so we
will use natural numbers and the identity function), together with composition of
linear functions and a linear primitive recursive scheme (i.e., primitive recursion
where each function uses its arguments exactly once). Linear primitive recursive
functions offer an implicit approach to copying and erasing. We can express both
the process of copying a number and the process of erasing a number, as linear
primitive recursive functions. Thus, the classes PR and LPR coincide.

Summarising, our main contributions are:

– Definition of linear primitive recursive functions (LPR)—a class of functions
defined by the initial functions zero, successor, and identity, together with
linear composition and pure iteration.

– Simulation of erasing and copying in LPR, in particular, projections can be
simulated by permutation followed by a linear erasing. Using this result, we
show that LPR and PR are exactly the same class of functions.

– Any general recursive function (i.e., any computable function) can be ob-
tained if we add a minimisation operator working on linear primitive recur-
sive functions.

This work exhibits a redundancy in the definition of recursive functions, and
shows that a minimalistic definition of primitive recursion, based on linear func-
tions, is sufficient. This is one more indication of the power of linear functions.

Related work: There are several alternative definitions of the primitive recursion
scheme [22,15,16,21,10]. In some of these works, for instance [16,10], primitive
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recursion was replaced by pure iteration. Pure iteration is a linear scheme, in
the sense that arguments of functions are used exactly once. Gladstone [16]
gave a definition of primitive recursion using the standard initial functions and
composition, but replaced primitive recursion by pure iteration. Here we refine
this definition by replacing also the initial functions (by linear initial functions)
and the composition scheme (by a linear composition scheme). We then show
that this defines a set of linear functions that corresponds exactly to the primitive
recursive functions.

Burroni [10] defined a category of primitive recursive functions with rather
intuitive graphic descriptions of its objects. The definition of PR in this category
is very close to ours (in particular iteration is also used instead of primitive re-
cursion). The main difference from our work is the underlying approach: Burroni
uses a categorical approach, while we use a standard recursion theory approach
in the definition of PR. As an example of this, in [10], the construction of natural
numbers uses an axiom similar to the Peano-Lawvere [19] axiom (more suitable
in a categorical approach), instead of the Peano axioms which build numbers
using the successor function.

There are several formalisms based on the notion of linearity that limit the use
of copy and erasing. This includes languages based on a version of the λ-calculus
with a type system corresponding to intuitionistic linear logic [12]. This calculus
(which can be seen as a minimal functional programming language) provides
explicit syntactical constructs for copying and erasing terms (corresponding to
the exponentials in linear logic) [1].

From another perspective there have been a number of calculi, again
many based on linear logic, for capturing specific complexity classes
([6,11,14,7,18,25,8]). One of the main examples is that of bounded linear logic [14],
which captures the class of polynomial time computable functions.

This paper is part of a research project which aims at studying the notion
of linearity in computation, and at analysing the computation power of linear
systems. The results described here provide the foundations for a series of re-
sults, including the definition of a linear version of Gödel’s System T [2] with a
decidable typing system for polymorphic iteration [4]. Current research in this
area includes the definition of an alternative version of System T which uses the
linear λ-calculus and pure iteration with standard (monomorphic) linear types,
without losing any of the computational power of Gödel’s original definition.
This paper is also a starting point for studying the connection between cartesian
closed categories and symmetric monoidal closed categories. This work, which
began in [20], studies this question using the internal languages (which are re-
spectively the λ-calculus and the linear λ-calculus).

In the next section we recall the background material. In Section 3 we define
the linear primitive recursive functions, and in Section 4 we show how any PR
function can be encoded as an LPR function and vice versa. In Section 5 we
define linear recursive functions and show that any computable function can be
written as a linear recursive function. Section 6 briefly discusses higher-order
primitive recursion. Finally we conclude the paper in Section 7.
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2 Background

We assume familiarity with recursion theory, and recall some basic notions along
the lines presented in [23]. We refer to reader to [23] for more details.

2.1 Primitive Recursive Functions

Notation: We use x1, . . . , y1, . . . to represent natural numbers, f, g, h to rep-
resent functions and X1, . . . to represent sequences of the form x1, . . . , xn. We
only have tuples on natural numbers, thus we will work modulo associativity for
simplicity: (X1, (x1, x2), X2) = (X1, x1, x2, X2).

Definition 1 (Primitive recursive functions). A function f : Natk → Nat
is primitive recursive if it can be defined from a set of initial functions using
composition and the primitive recursive scheme defined as:

– Initial functions:
1. The natural numbers, built from 0 and the successor function S. (We

write n or Sn 0 for S . . . (S︸ ︷︷ ︸
n

0).)

2. Projection functions: prn
i (x1, . . . , xn) = xi (1 ≤ i ≤ n); we omit the

superindex when there is no ambiguity.
– Composition, which allows us to define a primitive recursive function h using

auxiliary functions f , g1, . . . , gn where n ≥ 0: h(X) = f(g1(X), . . . , gn(X)).
– The primitive recursive scheme, which allows us to define a recursive func-

tion h using two auxiliary primitive recursive functions f , g:

h(X, 0) = f(X)
h(X, S n) = g(X, h(X, n), n).

In [16] it was shown that primitive recursion could be replaced by a more re-
stricted recursion scheme, called pure iteration:

hg(X, 0) = X
hg(X, S n) = g(hg(X, n)).

The function hg(X, n), obtained by the last scheme, is the result of applying the
function g n times to X . Hence we may write hg(X, n) to denote the function
gn(X). In the sequel we sometimes use the notation hf for the operator that
iterates f (using the pure iteration scheme).

We do not have constant functions of the form C(X) = x as initial functions.
However, we can see 0 as a constant function with no arguments, and every
other constant function can be built by composition of 0 and S, and projections.
For instance, the constant function zero(x, y) = 0 is defined as an instance of
composition (using the initial, 0-ary function 0) and one(x, y) = S(zero(x, y)),
again as an instance of the composition scheme.

Note also, that functions obtained from primitive recursive functions by intro-
ducing “dummy” variables, permuting variables, or repeating variables, are also
primitive recursive functions. To keep our definitions simple, we will sometimes
omit the definition of those functions. We give some examples below.
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Example 1. Consider the standard functions add and mul from Nat2 to Nat:

add(x, y) = x + y mul(x, y) = x ∗ y

The function add can be defined by primitive recursion as follows:

add(x, 0) = f(x)
add(x, S n) = g(x, n, add(x, n))

where
f(x) = pr 1(x) = x
g(x1, x2, x3) = S(pr 3(x1, x2, x3)) = S(x3)

The primitive recursive function mul is defined by:

mul(x, 0) = f(x)
mul(x, S n) = g(x, n, mul(x, n))

where

f(x) = 0
g(x1, x2, x3) = add(pr 1(x1, x2, x3), pr 3(x1, x2, x3)) = add(x1, x3)

In the sequel, we consider primitive recursive functions from Natk to Natl,
since every primitive recursive function from Natk to Natl can be transformed
into a primitive recursive function from Natk to Nat, and vice versa (see [24] for
details).

2.2 Recursive Functions

Definition 2 (Minimisation). Let f be a total function from Natn+1 to Nat.
The function g from Natn to Nat is called the minimisation of f and is defined
as: g(X) = min{y | f(X, y) = 0}. We denote g as μy(f).

Definition 3 (Recursive functions). The set of (partial) recursive functions
is defined as the smallest set of functions containing the natural numbers (built
from 0 and the successor function S) and the projection functions, and closed by
composition, primitive recursion and minimisation.

In particular, every primitive recursive function is recursive (since in both def-
initions we use the same initial functions, composition and primitive recursive
scheme). Closure by minimisation implies that for every n ≥ 0 and every total
recursive function f : Natn+1 → Nat, the function Mf : Natn → Nat defined by
Mf = μy(f) is a recursive function.

We recall the following result from Kleene [17].

Theorem 1 (The Kleene normal form). Let h be a partial recursive function
on Natk. Then, a number n can be found such that

h(x1, . . . , xk) = f(μy(g(n, x1, . . . , xk, y)))

where f and g are primitive recursive functions.
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3 Linear Primitive Recursive Functions

Definition 4. A function f : Natk → Natj is linear primitive recursive if it can
be defined from a set of linear initial functions using linear composition and the
linear primitive recursive scheme defined as follows:

– Initial functions:
1. The natural numbers, built from 0 and the successor function S. We write

n or Sn 0 for S . . . (S︸ ︷︷ ︸
n

0).

2. The identity function (Id).
– Linear composition, which allows us to define a function h using auxiliary

linear primitive recursive functions f , g1, . . . , gk:

h(x1, . . . , xn) = f(g1(X1), . . . , gk(Xk)),

where (X1, . . . , Xk) = (x1, . . . , xn).
– Pure iteration, which allows us to define a recursive function hg using an

auxiliary linear primitive recursive function g:

hg(X, 0) = X
hg(X, S n) = g(hg(X, n)).

Note that the condition (X1, . . . , Xk) = (x1, . . . , xn) in the definition of linear
composition above is simply a concise way of saying that each argument of the
function h must be used exactly once in the composition (it may seem that this
condition also restricts the order in which arguments are used, but we will show
below that permutations can be defined as primitive recursive functions).

Example 2. A simple example of a linear primitive recursive function is addition.
It can be defined as follows, where g(x) = S(x):

addg(x, 0) = x
addg(x, S n) = g(addg(x, n)).

Gladstone [16] defined the primitive recursive functions using the standard
initial functions and composition, with pure iteration as a recursion scheme (in-
deed the name comes from [16]). Burroni [10], from a categorical approach, gave
a definition of PR that is very close to ours, except that a different construction
of natural numbers is given.

3.1 Some Useful Linear Primitive Recursive Functions

Erasing the last element of a tuple. The function Elast, which erases the last
element of a tuple, is defined as:

Elast(X, 0) = X
Elast(X, S n) = Id(Elast(X, n))
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Lemma 1. For any X and number n, Elast(X, n) = X.

Proof. By induction: Elast(X, 0) = X and Elast(X, S n) = Id(Elast(X, n)) =
Id(X) = X .

We can use the fact that we can erase the last element of a tuple, to erase at
any position. We define Ei, the function that erases element i of a tuple as:

Ei(x1, . . . , xn) = Id(Elast(x1, . . . , xi), Id(xi+1, . . . , xn))

Lemma 2. Ei(x1, . . . , xn) = (x1, . . . , xi−1, xi+1, . . . , xn).

Proof. Follows from the correctness of Elast.

The zero function. Using the function that erases the last element one can define
a function zero, such that zero(X) = 0. The function zero is defined as:

zero(x1, . . . , xn) = Elast . . .Elast︸ ︷︷ ︸
n

(0, x1, . . . , xn)

Lemma 3. For any X, zero(X) = 0.

Proof. By induction on the length of the tuple X .

Linear copying. We now define copying using pure iteration. The function C1
k

produces k copies of a number:

f(x1, . . . , xk) = Id(Sx1, . . . , Sxk)
C1

k(n) = hf ((0, . . . , 0︸ ︷︷ ︸
k

), n),

where hf denotes the function obtained by using the pure iteration scheme with
the auxiliary function f .

Lemma 4. For any number n, and any k > 0, C1
k(n) = (n, . . . , n︸ ︷︷ ︸

k

).

Proof. By induction: C1
k(0) = hf ((0, . . . , 0︸ ︷︷ ︸

k

), 0) = (0, . . . , 0︸ ︷︷ ︸
k

), and

C1
k(S n)=hf ((0, . . . , 0︸ ︷︷ ︸

k

), S n)=f(hf ((0, . . . , 0︸ ︷︷ ︸
k

), n))=f(n, . . . , n︸ ︷︷ ︸
k

)=(S n, . . . , S n︸ ︷︷ ︸
k

).

This can be generalised to copy tuples. We use Ci
j to denote copying j times

a tuple with i elements. We first show how to define C2
2 , then after encoding

permutations we define Ci
j .

C2
2 (x1, x2) = h(C′(C1

2 (x1)), x2)
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where
h(x1, x2, x3, x4, 0) = (x1, x2, x3, x4)
h(x1, x2, x3, x4, S n) = C′′(h(x1, x2, x3, x4))

C′(x1, x2) = Id(putZero(x1), putZero(x2))
putZero(x1) = Id(x1, 0)
C′′(x1, x2, x3, x4) = Id(Id(x1), S(x2), Id(x3), S(x4))

Lemma 5. C2
2 (x1, x2) = (x1, x2, x1, x2).

Proof. Using the definition, C2
2 (x1, x2) = h((x1, 0, x1, 0), x2). The result follows

by induction on x2.

Permutations. We now define the swapping function π(x, y) = (y, x), as follows:

π(x, y) = E1(E4(C2
2 (x, y)))

Permutations on any tuple can be obtained from composition of swappings and
the identity. We will use π to denote permutation functions.

Having defined permutations, we define Ci
j as:

Ci
j(x1, . . . , xi) = π(C1

j (x1), . . . , C1
j (xi))

where π(x1, . . . , x1︸ ︷︷ ︸
j

, . . . , xi, . . . , xi︸ ︷︷ ︸
j

) = (x1, . . . , xi, . . . , x1, . . . , xi).

To simplify notation, we use C to denote Ci
j , when there is no ambiguity.

Example 3. Using the erasing and copying functions, we can define multiplica-
tion as a linear primitive recursive function.

mul(x, y) = Elast(mul′g(0, x, y))
mul′g(x1, x2, 0) = (x1, x2)
mul′g(x1, x2, S n) = g(mul′g(x1, x2, n))

where g(x1, x2) = f(x1, C(x2)), and f(x1, x2, x3) = (add(x1, x2), x3).

Using these ideas we will define a systematic translation of primitive recursive
definitions into linear primitive recursive functions.

4 From Linear Primitive to Primitive and Back

In this section we show that every primitive recursive function is linear primitive
recursive. We also show that linear primitive recursive functions do not add any
power to primitive recursive functions, i.e., the two classes coincide.
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4.1 Primitive Recursive Functions Are Linear Primitive Recursive

A summary of the encoding of primitive recursive functions using linear primitive
recursive functions is given as follows:

Primitive recursive Linear primitive recursive
0 and S 0 and S
projections permutations + linear erasing
composition linear composition + linear copying + linear erasing
recursive scheme pure iteration + linear copying + linear erasing

Projections. There are many alternative definitions of projections using linear
primitive recursive functions, for instance:

pr i(x1, . . . , xn) = Elast · · · Elast︸ ︷︷ ︸
n−1

(xi, x1, . . . , xi−1, xi+1, . . . , xn)

where (xi, x1, . . . , xi−1, xi+1, . . . , xn) = π(x1, . . . , xn).

Lemma 6. For any (x1, . . . , xn): pr i(x1, . . . , xn) = xi.

Proof. By induction on n.

– Basis: pr1(x1) = x1.
– Induction:

pr i(x1, . . . , xn) = Elast · · · Elast︸ ︷︷ ︸
n−1

(xi, x1, . . . , xi−1, xi+1, . . . , xn)

= Elast · · · Elast︸ ︷︷ ︸
n−2

(xi, x1, . . . , xi−1, xi+1, . . . , xn−1) = xi.

Multiple projection can be defined as follows:

pr I(X) = Elast · · · Elast︸ ︷︷ ︸
n−k

(X1, X2)

where I = {i1, . . . , ik} ⊆ {1, . . . , n}, (xi1 , . . . , xik
, X2) = π(X).

Lemma 7. pr{i1,...,ik}(x1, . . . , xn) = (xi1 , . . . , xik
).

Proof. By induction on n− k.

– pr{1,...,n}(x1, . . . , xn) = (x1, . . . , xn).
– Induction:

pr{i1,...,ik}(x1, . . . , xn) = Elast · · · Elast︸ ︷︷ ︸
n−k

(xi1 , . . . , xik
, xj1 , . . . , xjn−k

)

= Elast · · · Elast︸ ︷︷ ︸
n−k−1

(xi1 , . . . , xik
, xj1 , . . . , xjn−k−1)

= (xi1 , . . . , xik
).
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Composition. We now define composition (see Definition 1), using linear primi-
tive recursive functions. Let h(X) = f(g1(X), . . . , gk(X)) where X = x1, . . . , xn,
and assume there are linear primitive recursive functions fL, and gL

1 , . . . , gL
k such

that
fL(Y ) = f(Y )
gL

i (Z) = gi(Z), (1 ≤ i ≤ k).

Then we define h using the linear composition scheme as follows:
h(X) = f ′

L(π(Ck(x1), . . . , Ck(xn))), where

f ′
L(X ′) = fL(gL

1 (X1), . . . , gL
k (Xk)) and

X ′=(X1, . . . , Xk)=(x1, . . . , xn︸ ︷︷ ︸
X1

, . . . , x1, . . . , xn︸ ︷︷ ︸
Xk

) = π(x1, . . . , x1︸ ︷︷ ︸
k

, . . . , xn, . . . , xn︸ ︷︷ ︸
k

).

Primitive recursive scheme. We now define the primitive recursive scheme of
Definition 1, using linear primitive recursive functions. Let fL and gL be such
that for the auxiliary functions f and g in the primitive recursive scheme we
have:

fL(X) = f(X)
gL(X, x, n) = g(X, x, n).

We define hL in the following way: hL(X, n) = pr1(hg1(f1(C(X)), 0, n)), where

f1(X1, X2) = (fL(X1), X2)
f2(X, x, n) = (X, x, n, X, n) = π(C(X), x, C(n))
g2(X, x, n, X, n) = (gL(X, x, n), X, S n)
g1(x, X, n) = g2(f2(X, x, n)) (x, X, n) = π(X, x, n).

Lemma 8. For any X, and number n, hg1(f1(C(X)), 0, n) = (h(X, n), X, n).

Proof. By induction: hg1(f1(C(X)), 0, 0) = (fL(X), X, 0) = (h(X, 0), X, 0) and

hg1(f1(C(X)), 0, Sn) = g1(hg1(f1(C(X)), 0, n))
= g1(h(X, n), X, n)
= g2(f2(X, h(X, n), n))
= (gL(X, h(X, n), n), X, S n) = (h(X, S n), X, S n).

Lemma 9. For any X, and number n: hL(X, n) = h(X, n).

Proof. hL(X, n) = pr 1(hg1(f1(C(X)), 0, n)) = pr 1(h(X, n), X, n) = h(X, n).

Example 4. The primitive recursive function mul defined in Example 1, can be
encoded as the following linear primitive recursive function:

mulL(x1, x2) = pr1(hg1(f1(C(x1)), 0, x2))

with

f1(x1, x2) = (fL(x1), x2)
g1(x1, x2, x3) = g2(f2(x1, x2, x3))
f2(x1, x2, x3) = π(C(x1), x2, C(x3)) = (x1, x2, x3, x1, x3)
g2(x1, x2, x3, x4, x5) = (gL(x1, x2, x3), x4, S x5)
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Assuming gL to be the encoding of add(pr1(x1, x2, x3), pr3(x1, x2, x3)) and
fL(x) = E(x). Notice that a more simple encoding of this function is possible as
was shown in Example 3.

4.2 Linear Primitive Recursive Functions Are Primitive Recursive

A summary of the encoding of linear primitive recursive functions using primitive
recursive functions is given as follows:

Linear primitive recursive Primitive recursive
0 and S 0 and S
Id projection
linear composition composition + projection
pure iteration recursive scheme + projection

Identity. This is just a trivial projection Id(x) = pr1
1(x).

Linear composition. We now define linear composition, using primitive recursive
functions. Let fP , and gP

1 , . . . , gP
k be such that

fP (X) = f(X)
gP

i (Xi) = gi(Xi), (1 ≤ i ≤ k).

and (X1, . . . , Xk) = π(X). Then we define linear composition as

h(X) = fP (g′1(X), . . . , g′k(X))

where g′i(X) = gP
i (pr Ii

(X)), with Ii = {i1, . . . , im} ⊆ {1, . . . , n}, and if X =
x1, . . . , xn, then Xi = xji1

, . . . , xjim
.

Pure Iteration. Let gP be a primitive recursive function from Natk to Natl,
such that for the auxiliary function g in the pure iteration scheme we have:
gP (X) = g(X).

We define hP in the following way: hP (X, n) = hg1(X, n), where, if X =
x1, . . . , xn, Y = y1, . . . , yl

fP (X) = X
g1(X, Y, n) = gP (pr{n+1,...,n+l}(X, Y, n)) = gP (Y ).

Lemma 10. For any X = x1, . . . , xk, and number n, hP (X, n) = hg(X, n).

Proof. By induction on n.

– Basis: hP (X, 0) = f(X) = X = hg(X, 0).
– Induction:

hP (X, Sn) = g1(X, h(X, n), n)
= gP (pr{n+1,...,n+l}(X, hg1(X, n), n))
= gP (pr{n+1,...,n+l}(X, hP (X, n), n))
= gP (hP (X, n))
= g(hg(X, n))
= hg(X, S n).
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Using the encodings described above, we define the following translation
functions:

Definition 5. – Let f be a primitive recursive function. Then �f�L will denote
a linear primitive recursive function such that: f(X) = �f�L(X).

– Let f be a linear primitive recursive function. Then �f�P will denote a prim-
itive recursive function such that: f(X) = �f�P (X).

We thus obtain the main result of this section:

Theorem 2. Every PR function is LPR, and vice versa. That is PR = LPR.

5 Minimisation of Linear Functions

5.1 Partial Linear Recursive Functions

The minimisation operator defined in Section 2 (see Definition 2) can also be
applied to linear functions.

Definition 6 (Minimisation). Let f be a linear recursive function from
Natn+1 to Nat. The minimisation of f , written μy(f), is the function from Natn

to Nat defined as: μy(f)(X) = min{y | f(X, y) = 0}.

Definition 7 (Linear recursive functions). The set of linear recursive func-
tions (LRF) is the smallest set containing the initial functions 0, S and Id (that
is, natural numbers and the identity function, as in Definition 4) and closed by
linear composition, pure iteration, and minimisation.

In particular, every linear primitive recursive function is linear recursive, and
for every n ≥ 0 and every total linear recursive function f : Natn+1 → Nat, the
function Mf : Natn → Nat defined by Mf = μy(f) is a linear recursive function.

5.2 From Recursive to Linear Recursive

Theorem 3. Let h be a (partial) recursive function on Natk. Then there exists a
linear recursive function hL on Natk, such that: h(x1, . . . , xk) = hL(x1, . . . , xk).

Proof. Let h be a recursive function on Natk. Then, by Kleene’s theorem, there
exists f and g primitive recursive, and a number n, such that h(x1, . . . , xk) =
f(μy(g(n, x1, . . . , xk, y))).

Consider then the function hL(x1, . . . , xk) = �f�L(μy(�g�L(n, x1, . . . , xk, y))).
Notice that

g(n, x1, . . . , xk, y) = �g�L(n, x1, . . . , xk, y)
⇒ μy(g(n, x1, . . . , xk, y)) = μy(�g�L(n, x1, . . . , xk, y))
⇒ f(μy(g(n, x1, . . . , xk, y))) = �f�L(μy(�g�L(n, x1, . . . , xk, y))).

Thus
h(x1, . . . , xk) = f(μy(g(n, x1, . . . , xk, y)))

= �f�L(μy(�g�L(n, x1, . . . , xk, y)))
= hL(x1, . . . , xk).
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The function hL is linear recursive.
An alternative proof could be written using the fact that closing isomorphic

sets of functions with the same minimisation functor gives isomorphic sets.

Corollary 1. All computable functions are linear recursive.

6 Primitive Recursion at Higher Types

It is well known that a primitive recursion scheme at higher types permits the
representation of all the functions that are provably total in Peano Arithmetic
(see e.g., [13]). The most commonly known formalism for this is Gödel’s System
T . Using and extending techniques similar to the ones shown in Section 4 we
can also prove that:

Theorem 4. All functions provably total in Peano Arithmetic are linear.

The essential points in the proof of this theorem are the mechanisms for copying
and erasing functions; we refer the reader to [3] for the technical details.

7 Conclusion

The aim of this paper is to demonstrate that linear computations are power-
ful: linear recursive functions can express copying and erasing, thus all Turing
computable functions are linear recursive. Moreover, without minimisation but
with the addition of higher-order constructs, any function definable in Gödel’s
System T is linear.
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Proving the security for a bounded number of sessions in such formal models
deserved a lot of articles, which we cannot all cite here. Let us mention [16], in
which the authors proved that the security problem is co-NP complete in the
perfect cryptography case. The extension to several equational theories has been
considered: exclusive-or [7,2], Abelian groups [17], some properties of modular
exponentiation [3,15], homomorphisms and exclusive-or [10],... All these works
rely on solving deducibility constraints modulo equational theories, an approach
that we will follow in the present paper.

On the other side, if we put too much of arithmetic in the equational theory,
getting a more precise model, the security problem becomes undecidable: a nec-
essary condition is the decidability of unification. A typical problem is: which
properties of modular exponentiation do we want to keep? As shown in [13], the
boundary between decidability and undecidability is tight.

We are interested here in yet other properties of modular exponentiation. In a
case study of an electronic purse protocol (whose some parts will be described in
Section 2) submitted by France Télécom, the protocol cannot be even executed
if we don’t have both the properties (xy)z = xy×z and xy × xz = xy+z, as well
as some other properties described later. However, having both multiplication
and addition of exponents, together with the usual distributivity laws, yields
undecidability of unification by an easy encoding of integer arithmetic. Never-
theless, we managed to design some equational theory for which unification is
decidable and the protocol can be executed. The theory will be described in
detail in Section 2. It is a union of three Abelian group theories and some rules
for exponentiation.

Our equational theory does not fall in any class for which the security problem
is known to be decidable. In view of the number of symbols and rules, it is worth
trying to use combination results. Unfortunately, we cannot use directly the re-
sults of [4], as our theories are not disjoint. Further (closer) results are those of
Y. Chevalier and M. Rusinowitch in [5], in which the authors give combination
results for non-disjoint signatures, with applications to some security issues in
presence of modular exponentiation. However, again, we cannot apply these re-
sults, as our theory can not be split into two equational theories satisfying the
hypotheses of [5].

We were left to develop a new decision procedure. An important step towards
this result is to decide the so-called intruder deduction problem: Given a finite
set of messages T and a given message m, is it possible for the intruder to
retrieve m from T by using his deduction capabilities? This corresponds to the
security decision problem in presence of a passive eavesdropper, i.e. an intruder
who is only able to listen messages that pass over the network. In particular
it is assumed that he can not intercept messages and send some fake messages
over the network. In this paper, we propose a decision procedure to decide this
problem in presence of an intruder having complex deduction capabilities which
are modeled through an equational theory. This is achieved by using a locality
lemma from which it follows that the intruder deduction problem can be decided
in polynomial time.
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2 Intruder Deduction Problem

In this section, we describe our case study and the equational theory allowing us
to model the protocol. Then, we formally describe the problem we are interested
in. Our main result is stated in Theorem 1.

2.1 The Electronic Purse Protocol

The protocol involves three possible agents: the electronic purse EP , a server S
and a trusted authority A. We will not consider here the authority A, who is
involved only in case of claims of either party (and we also simplify several parts
in the following). We denote by b and r two positive integers, which are public.
The public key of EP is bs mod r whereas s is its private key.

First, there is a phase during which the server authenticates itself. We skip
this phase here, which does not make use of algebraic properties. After this
phase, S and EP agree on a session nonce Ns and S owes the (certified) public
key bs mod r of EP . Then

1. The purse EP generates a nonce N , builds a message M (which is only used
in case of conflict and whose content is not relevant here) and sends to the
server S: hash(bNmod r, S, Ns, M, X), where X is the amount payed.

2. The server S challenges EP sending a nonce Nc.
3. The purse EP sends back N−s×Nc, M, X and subtract X from his account.
4. The server S checks that the message received at step 1 is consistent with the

message received at step 3 and then increases his account from the amount X .

The important and difficult part is the last step: S should be able to complete
this verification. Here are the operations performed by S at this stage:

hash((bs)Nc × bN−s×Ncmod r, S, Ns, M, X) = hash(bNmod r, S, Ns, M, X)

The server S raises b−s to the power Nc (bs is public and Nc is known), raises b
to the power N − s×Nc (which is the message sent at step 3), and multiply the
two results. We can see that the following equational properties are used:

exp(exp(b, y), z) = exp(b, y × z) exp(b, x)× exp(b, y) = exp(b, y + z)

as well as Abelian group properties of both × and +.

2.2 The Equational Theory

The problem now is that if we put together the above properties and the Abelian
group properties of + and ×, we can derive the distributivity of × w.r.t. +, in
which case unification (hence security) becomes undecidable (see e.g. [9]). That is
why we used a first trick: we introduce a unary function symbol h, whose meaning
is h(x) = exp(b, x). We also use two distinct multiplication symbols: • and �, with
the following equational axioms EP: AG(+, J+, e+), AG(�, J
, e
), AG(•, J•, e•)
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(where AG are the axioms of Abelian Groups, which will be discussed later) as
well as:

exp(h(x), y) = h(x � y) h(x) • h(y) = h(x + y)
exp(exp(x, y), z) = exp(x, y � z)

These equational axioms suffice for the verification at the last step of the
protocol. The distinction of the two multiplication symbols is not necessary
for the purpose of the present paper: everything holds if we equate • and �.
However, we try here to meet the conditions of [5] for the combination results:
the distinction between the two multiplication symbols might be useful when
extending the results of this paper to the active intruder case.

It remains to show that unification is decidable modulo this theory. This is
the subject of Section 3.

2.3 Security Problem

The most widely used deduction relation representing the deduction abilities of
an intruder is often referred to as the Dolev-Yao model [12]. However, we want
to give to the intruder the power to use equational reasoning modulo the set EP
of equational axioms. The resulting set of deduction rules, denoted by IEP is
given in Figure 1 where F = {+, J+, �, J
, •, J•, exp, h}. This is the now classical
approach, using explicit destructors. When f is associative and commutative, the
number of premises of such a rule is unbounded; the set of intruder deduction
rules is recursive (but might be infinite).

T � u1 . . . T � un

where f ∈ F
T � f(u1, . . . , un)

(Eq)
T � u

u =EP v
T � v

Fig. 1. Inference system — IEP

Assume given an intruder theory. The problem whether an intruder can gain
certain information s from a set of knowledge T , i.e. whether there is a proof
of T � s, is called the intruder deduction problem.

INPUT: a finite set of terms T , a term s (the secret).
OUTPUT: Does there exist a proof of T � s?

Theorem 1. The intruder deduction problem is decidable in polynomial time
for the inference system IEP.

To prove this result, we will first introduce a new inference system that is equiv-
alent from the point of view of deduction. Indeed, the proof system given in
Figure 1 is not appropriate for automated proof search: the rule (Eq) allows equa-
tional reasoning at any moment of a proof. To define a more effective model, we
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represent the equational theory by an AC-convergent rewrite system. The rewrit-
ing system together with some of its properties are given in Section 3. Moreover,
in order to make easier some reasoning we will split the rule about exp into three
different inference rules. This new inference system will be fully described at the
beginning of Section 4.

3 Properties of the Equational Theory

In this section we study the equational theory we have introduced in Section 2.2.
We show that this theory can be represented by an AC-convergent rewriting
system and we establish that unification modulo EP is decidable. Lastly, we prove
some technical lemmas which will be useful to establish our locality result stated
in Proposition 2. We rely on classical results on rewriting modulo equations (in
particular modulo AC). See [11] for the definitions and notations.

3.1 Rewriting System Associated to the Equational Theory EP

For simplicity, our alphabet will contain a finite number of free constant symbols
and the associative-commutative symbols {�, •, +}, the binary symbol exp, the
unary symbols h, J
, J+, J• and the 3 neutral elements. We could also add other
symbols, such as encryption, hashing,... and use then combination results of [1]
allowing us to conclude in the case of disjoint theories.

The equational theory EP can actually be presented by a finite convergent
rewrite system R (modulo associativity and commutativity (AC) of +, � and •),
which has actually even stronger properties. First, for each ◦ ∈ {+, �, •} RAG(◦)
is the rewrite system modulo AC for ◦:

x ◦ e◦ → x x ◦ J◦(x) → e◦
J◦(x) ◦ J◦(y) → J◦(x ◦ y) J◦(e◦)→ e◦

J◦(J◦(x)) → x J◦(x) ◦ x ◦ y → y
J◦(x) ◦ J◦(y) ◦ z → J◦(x ◦ y) ◦ z J◦(x ◦ y) ◦ x → J◦(y)
J◦(x ◦ y) ◦ x ◦ z → J◦(y) ◦ z J◦(J◦(x) ◦ y)→ x ◦ J◦(y)

where e◦ is the appropriate neutral element. The unusual orientation of rules for
inverses will ensure strong properties of the rewrite system, as explained in [6].
In addition, we have the following rewrite rules:

R0 =

⎧⎪⎪⎨
⎪⎪⎩

exp(h(x), y) → h(x � y) J•(h(x)) → h(J+(x))
exp(exp(x, y), z)→ exp(x, y � z) h(e+) → e•

h(x) • h(y)→ h(x + y) J•(h(x) • y) → h(J+(x)) • J•(y)
h(x) • h(y) • z → h(x + y) • z exp(e•, x) → h(e+ � x)

The rewriting systemR = RAG(
)∪RAG(•)∪RAG(+)∪R0 consists of the 38 rewrite
rules and the following result has been mechanically verified using CiME [8].

Lemma 1. R is convergent modulo associativity and commutativity.
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The normal form (modulo AC) of t is written t↓. Furthermore, not only R is
convergent, but also:

Lemma 2. (R, AC) is a decomposition of the equational theory EP which has
the finite variant property.

This property has been introduced in [6] and ensures that, for any term (or
finite set of terms) t, there is a finite computable set of substitutions θ1, . . . , θn

such that, for any substitution σ, there exists an index i and a substitution σ′

such that tσ↓ = tθi↓σ′. In other words, all possible reductions in an instance
of t can be computed in advance. The lemma can be proved using a sufficient
condition introduced in [6] and called boundedness. The interest of this property
is twofold. First, due to the fact that unification is decidable for the theory AC,
it ensures that unification is also decidable for EP. Secondly, such a property
will be certainly useful to lift our result to solve intruder deduction constraints
with variables in order to decide the security problem in presence of an active
attacker.

3.2 Notion of Subterm

We assume the reader familiar with the basic vocabulary and results on term
rewriting systems and term rewriting systems modulo AC. As usual, AC symbols
are also considered as variadic symbols and may be used in infix notation and
terms are flattened. For ◦ ∈ {�, +, •}, we define inv◦(u) as the term J◦(u)↓. For
instance, we have that inv•(h(J+(a))) = J•(h(J+(a)))↓ = J•(h(J+(a)))↓ = h(a).

Definition 1. We denote by top(t) the root symbol of the term t. top(u) is
defined by top(J◦(v ◦ w)) = ◦, top(h(w + v)) = •, top(h(J+(u + v))) = • and
top(u) = top(u) otherwise.

For instance, we have that top(h(a+b)) = •, top(h(a)) = h, top(J+(a+b)) = +
and top(J+(a)) = J+.

Definition 2. Let ◦ ∈ {�, +, •}, the set DS◦(u) is defined by

– DS◦(u ◦ v) = DS◦(u) ∪DS◦(v),
– DS◦(J◦(u)) = {J◦(v) | v ∈ DS◦(u)},
– DS•(h(u)) = {h(v) | v ∈ DS+(u)}, and
– DS◦(u) = {u} if top(u) �= ◦.

In particular, note that DS•(h(J+(a + b))) = {h(J+(a)), h(J+(b))}.
Definition 3 (subterms). Let t be a term in normal form, Sub(t) is the small-
est set of terms such that t ∈ Sub(t) and if u ∈ Sub(t) then

– either ◦ = top(u) ∈ {�, •, +} and DS◦(u) ⊆ Sub(t)
– or else u = f(u1, . . . , un) and u1, . . . , un ∈ Sub(t).

This notion is extended as expected to set of terms.

Example 1. Let t1 = J+(a + b), t2 = h(J+(b)), t3 = J
(J+(b)) � c and t4 =
h(c). We have that Sub(t1) = {t1, J+(a), J+(b), a, b}, Sub(t2) = {t2, J+(b), b},
Sub(t3) = {t3, J
(J+(b)), J+(b), b, c}, and Sub(t4) = {t4, c}.
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3.3 Technical Lemmas on Rewriting

The lemmas stated and proved below are used in the proof of Proposition 2.

Lemma 3. Let t, t1, . . . , tn be terms in normal form, n ≥ 1, ◦ ∈ {�, •, +},
top(t) /∈{◦, e◦} and assume that top((t◦t1◦. . .◦tn)↓) �=◦ and (t1 ◦ . . . ◦ tn)↓ �=e◦.
Then, there is an index i such that inv◦(t) ∈ DS◦(ti).

Proof. The rewrite system R is convergent. So we can choose a strategy for
reducing t ◦ t1 ◦ . . . ◦ tn to its normal form. Given a term u, we order possible
redexes lσ → rσ in u increasing order of priority as follows:

1. l = J◦(x) ◦ J◦(y) ◦ z and J◦(x)σ = t (or J◦(y)σ = t, the t in the lemma’s
statement)

2. l = h(x) • h(y) • z and h(x)σ = t (or h(y)σ = t)
3. l = h(x) • h(y) • z, and h(x)σ �= t, h(y)σ �= t
4. all other cases

We contract always a redex with a maximal priority. This means that the first
two cases are applied, only when other rules instances are not a redex in u.

Then we prove the result on the length of such a reduction sequence of t ◦ t1 ◦
. . . ◦ tn to its normal form.

The case where the reduction length is 0 does not occur. Now, we investigate
the possible rules, which are applied for the first reduction step. There are 7
cases when ◦ �= • and two additional cases when ◦ = •:

Case 1: The rule is x ◦ e◦ → x. Since t, t1, . . . , tn are in normal form, we must
have ti = e◦ for some i. We simply apply the induction hypothesis. Note
that, because (t1 ◦ . . . ◦ tn)↓ �= e◦, n must be at least 2.

Case 2: The rule is x◦J◦(x) → e◦: t◦t1◦. . .◦tn = xσ◦J◦(xσ). Either t = J◦(xσ)
and, since top(t) �= ◦, we must have n = 1 and t1 = inv◦(t) or else there
is an index i such that ti = J◦(xσ) or ti = J◦(xσ) ◦ t′i. In the first case,
xσ = t ◦ u and then ti = J◦(t ◦ u). In the second case either xσ = t ◦ u and
ti = J◦(t ◦ u) ◦ t′i or t′i = t ◦ u and ti = t ◦ u ◦ J◦(xσ).

Case 3: The rule is J◦(x) ◦ x ◦ y → y. Then, as in case 2, t = J◦(xσ) and, for
some i, ti = inv◦(t) ◦ u or else there is an index i such that ti = J◦(xσ) ◦ t′i.
In that case, either ti = t ◦ u or yσ = t ◦ t′1 ◦ . . . ◦ t′k and, for each k, t′k is in
normal form and there is an injection π from {1, . . . , k} in {1, . . . , n} such
that, for every j, tπ(j) = t′j ◦uj. Moreover, (t′1◦ . . .◦t′k)↓ = (t1◦ . . .◦tn)↓ �= e◦.
Then, we can apply the induction hypothesis: there is an index j such that
t′j = inv◦(t) or t′j = inv◦(t) ◦ u or t′j = J0(t ◦ u) ◦ v or t′j = J0(t ◦ u). In each
case, choosing i = π(j), we get the desired properties.

Case 4: The rule is J◦(x) ◦ J◦(y) ◦ z → J◦(x ◦ y) ◦ z. If t = J◦(x)σ, then, by
hypothesis on the strategy, J◦(yσ) ◦ zσ is in normal form and, moreover, zσ
cannot be written t◦u (otherwise another rule applies). Then J◦(x◦y)σ ◦zσ
is in normal form, which contradicts top((t ◦ t1 ◦ . . . ◦ tn)↓) �= ◦: this case
cannot occur.
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Now, J◦(x ◦ y)σ is in normal form and zσ = t ◦ t′1 ◦ . . . ◦ t′k where the
terms t′1, . . . t

′
k are in normal form and (J◦(x ◦ y)σ ◦ t′1, . . . ◦ t′k)↓ �= e◦. We

can apply the induction hypothesis: inv◦(t) ∈ DS◦(t′j) for some j or else
inv◦(t) ∈ DS◦(J◦(x ◦ y)σ). In the first case, as in case 3, there is some index
i = π(j) such that ti = t′j ◦ u, hence ti = inv◦(t) ◦ v ◦ u. In the second case,
there are indices i1, i2 such that ti1 = J◦(xσ)◦u and ti2 = J◦(yσ)◦v (u and v
might be empty here). Hence there is a variable (say x) such that t = J◦(t′)
and xσ = t′ ◦ u. Then t ∈ DS◦(ti1).

Case 5: The rule is J◦(x) ◦ J◦(y) → J◦(x ◦ y). This case cannot occur since
the resulting term would be in normal form (remember J◦(xσ) and J◦(yσ)
are assumed both in normal form) and we would not have top((t ◦ t1 ◦ . . . ◦
tn)↓) = ◦.

Case 6: The rule is J◦(x ◦ y) ◦ x → J◦(y). In this case, t cannot be J◦(x ◦ y)σ
since top(t) �= ◦. Hence xσ = t ◦ u and there is an index i such that
ti = J◦(x ◦ y)σ ◦ v (with possibly empty u or v). Then t ∈ DS◦(ti).

Case 7: The rule is J◦(x ◦ y) ◦ x ◦ z → J◦(y) ◦ z. As in case 6, J◦(x ◦ y)σ cannot
be t itself: either xσ = t ◦ u or else zσ = t ◦ u for some (possibly empty) u.
Moreover, there is an index i such that ti = J◦(x ◦ y)σ ◦ w (with possibly
empty w).

In the first case, t ∈ DS◦(ti) and, in the second case, we apply the
induction hypothesis: if zσ = t′1 ◦ . . . ◦ t′k, either there is some index j such
that inv◦(t) ∈ DS◦(t′j), in which case, as before, there is some index k such
that inv◦(t) ∈ DS◦(tk) or else inv◦(t) ∈ DS◦(J◦(yσ)). Then t ∈ DS◦(ti).

Case 8: the rule is h(x)•h(y) → h(x+y): let h(x)σ = t = h(u1), h(y)σ = h(u2)
and top(u1) �= +. According to the strategy, h(y)σ is in normal form.Since
h(e+) → e• and h(u1 + u2)↓ �= e•, h(u1 + u2)↓ = h((u1 + u2)↓) and we can
apply the induction hypothesis to u1+u2 (with ◦ = +): inv+(u1) ∈ DS+(u2),
which implies h(inv+(u1)) ∈ DS•(h(u2)). But inv•(h(u1)) = h(inv+(u1)) by
definition. Hence inv•(t) ∈ DS•(h(u2)), which is the desired result.

Case 9: the rule is h(x) • h(y) • z → h(x + y) • z. If we had h(x)σ = t (resp.
h(y)σ = t), by hypothesis on the strategy, we would have h(y)σ•zσ in normal
form. In particular, zσ cannot be written h(v) •w or h(v) or J•(h(v)) •w or
J•(h(v)). This implies that (t ◦ . . . ◦ tn)↓ = h(xσ + yσ)↓ • zσ, contradicting
top((t ◦ t1 ◦ . . . ◦ tn)↓) �= ◦.

It follows that zσ = t • t′1 • . . . • t′k (and each t′i is some tj). Moreover,
each t′i and t itself must be headed with h (by the assumed strategy and
since the normal form is not headed with •). Let ti = h(ui) and t = h(u0).
(t • t1 . . . • tn)↓ = h(v) and (u0 + . . . + un)↓ = v. Now, (u1 + . . . + un)↓ �= e+

and top((u0 + . . . + un)↓) �= +. Hence, by induction hypothesis, inv+(u0) ∈
DS+(ui) for some i. It follows that inv•(t) ∈ DS•(ti). �

Lemma 4. Let ◦ ∈ {�, •, +}, t1, . . . , tn, u1, . . . , um be terms in normal form
such that for every i, top(ti) = ◦ and top(ui) /∈ {◦, e◦}. Let t = (t1 ◦ . . . ◦ tn ◦
u1 ◦ . . . ◦ um)↓. Then for every i, either ui ∈ DS◦(t) or there is an index j such
that inv◦(ui) ∈ DS◦(tj), or else there is an index j such that uj = inv◦(ui).
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Proof. We use the lemma 3, with ui in place of t and adding a term tn+1 =
inv◦(t): we conclude that, for every i, either inv◦(ui) ∈ DS◦(tn+1) or inv◦(ui) ∈
DS◦(uj) or inv◦(ui) ∈ DS◦(tj). In the first case, ui ∈ DSt(), in the second case
inv◦(ui) = uj. �

4 Locality

We first introduce a new inference system equivalent to IEP and then we will
show that this inference system is local w.r.t. to a notion of subterms F .

Definition 4 (F -local). An inference system I is F -local if for any proof of
T � u in I there exists one such that all intermediate formulas are in F (T∪{u}).

4.1 A Local Inference System

We introduce a new inference system which can be viewed as the union of two
parts denoted respectively by I1 and I2. From now on we omit the rule (Eq) and
consider a variant of the deduction model which works on normal forms. This
means that, after each step, the term obtained is reduced to its normal form. The
part I1 is made up of the following 7 rules where F− = {+, J+, �, J
, •, J•, h}.

I1 =

{
(Rf )

T � u1 . . . T � un
where f ∈ F−

T � f(u1, . . . , un)↓
We also distinguish the rules obtained by exponentiation, depending on the

first premise of the inference rule: either applying exponentiation to u, v yields
a term exp(u, v) in normal form or else u = exp(t1, t2) or else u = h(t1). We
distinguish these three cases splitting the single inference rule into three different
inference rules, which will be more convenient for further proofs. We let I2 be
the inference system made up of the three following rules:

I2 =

{
h(t1) t2 · · · tn

Exp1
h(t1 � · · · � tn)↓

exp(t1, t2) t3 · · · tn
Exp2

exp(t1, t2 � · · · � tn)↓
t u

Exp3
exp(t, u)

Equivalence modulo AC is easy to decide, so we omit the equality rule for AC
and just work with equivalence classes modulo AC. We have the following result.

Proposition 1. Let T be a set of terms and u a term (in normal form). We
have that T � u is derivable in IEP if and only if T � u is derivable in I1 ∪ I2.

Definition 5 (decomposition rule). The application of a rule in I2 is a de-
composition if it is an instance of Exp1 and the resulting term is of the form h(u)
with top(u) �= �. A decomposition rule for I1 is a rule Rf , such that one of the
following occurs:

– f ∈ {�, •, +} and the conclusion t = (f(t1, . . . , tn))↓ is such that top(t) �= f
– f = J◦ and the rule is applied to a term of the form J◦(t)

Rules, which are not decomposition rules are compositions.
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4.2 Locality Result

We show that our case study satisfies the locality properties. First we need to
define a suitable function F . We consider the following one:

F (T ) = Sub(T )
∪ {h(t) | t ∈ Sub(T ),top(t) = +}
∪ {h(inv+(t) | t ∈ Sub(t),top(t) = +}
∪ {inv◦(t) | t ∈ Sub(T ),top(t) = ◦, ◦ ∈ {�, +}}
∪ {h(t) | ∃u ∈ Sub(T ) such that top(u) = ◦, t ∈ DS◦(u), ◦ ∈ {�, +}}
∪ {inv◦(t) |∃u∈Sub(T ) such that top(u)=◦, t∈DS◦(u), ◦∈{�, +, •}}
∪ {h(inv◦(t)) |∃u∈Sub(T ) such that top(u)=◦, t∈DS◦(u), ◦∈{�, +}}

Lemma 5. The size of F (T ) (number of distinct subterms) is linear in the size
of T .

Proof. More precisely, the size of F (T ) is bounded by 10 times the size of T . For,
it suffices to note that, all terms in F (T ) are always in Sub(T ) ∪ h(Sub(T )) ∪
inv◦(Sub(T )) ∪ h(inv◦(Sub(T ))) for some ◦.

The remainder of the paper is devoted to the proof of the following result.

Proposition 2. The inference system I1 ∪ I2 is F -local.

Example 2. Here are some examples of proofs, which satisfy the requirements of
the proposition:

h(a + b + c)

a
RJ+

J+(a)
Rh

h(J+(a))
R•

h(b + c)

a + b + c
Rh

h(a + b + c) h(J+(a))
R•

h(b + c)

h(b)

a � b
RJ�

J
(a � b)
Exp1

h(J
(a))

a + b
RJ+

J+(a + b)
Rh

h(J+(a + b)) h(a)
R•

h(J+(b))

An an example of proof rewriting:

a + b c
R+

a + b + c
Rh

h(a + b + c) h(J+(a))
R•

h(b + c)

=⇒
a + b

Rh
h(a + b) h(J+(a))

c
Rh

h(c)
R•

h(b + c)
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To prove this result, we consider normal proofs of t which are minimal in
size. Then we prove the result by induction on the number of layers. Then it
is a series of case study, mainly relying on Lemmas 3, 4, and technical lemmas
carefully investigating the cases in which there is a decomposition. We normalize
the proofs according to the rules given in Figure 2. These rules are (strongly)
terminating (but not confluent). This is our notion of cut elimination.

Before we switch to the proof of this proposition in the next subsections, let
us note that theorem 1 is a consequence of the proposition and the following
lemma:

Lemma 6 (one-step deducibility). Given a finite set of terms T , a term t
and a function symbol f , it can be decided in polynomial time whether there are
terms t1, . . . , tn ∈ T such that f(t1, . . . , tn)↓ = t.

The proof of this lemma relies on standard techniques: if f is not an associative-
commutative symbol, then n is fixed and a simple enumeration gives a polynomial
algorithm. Otherwise, in all cases, except when f = •, only the Abelian group
properties of a single symbol have to be considered and the problem amounts to
solve a system of linear equations over Z, as already noticed by several authors.
When f = •, we have that t = h(t′) • t′′ for some terms t′ and t′′. Let, for u ∈ T ,
f1(u), f2(u) be such that u = h(f1(u)) • f2(u),f1(u) and f2(u) being possibly
empty. The one-step deducibility problem reduces to a system of two systems of
linear equations over Z:

∑
u∈T zuf1(u) = t′ and

∏
u∈T f2(u)zu = t′′.

Now, the algorithm works as follows. Given T and t, we compute F (T ) ∪
F (t) (linear time) and then use a fixed point algorithm for the computation of
deducible terms in F (T )∪F (t). Initially, the set D of deducible terms is set to T .
Then until a fixed point is reached, add to D the terms in F (T )∪ F (t) that are
deducible in one step from terms in D.

This is a polynomial algorithm as one-step deducibility can be checked in
polynomial time according to Lemma 6.

4.3 Preliminary Lemmas

Lemma 7. If t is obtained by decomposition using Rf ∈ I1, one of the following
holds:

– t ∈ {e+, e
, e•}
– The premise is f(t) (f ∈ {J+, J
, J•})
– f ∈ {�, +, •} and there is a premise u such that t ∈ DSf (u).

Proof. The rule Rf can be a decomposition only when f ∈ {J◦, ◦} and ◦ ∈
{�, +, •}. If f = J◦, we are in the second case of the conclusion of the lemma.
Only remains to consider f ∈ {�, +, •}. Let then t1, . . . , tn be the premises of
the rule and t be the conclusion. Either t = ef (then we fall into the first case of
the conclusion) or else (f(invf (t), t1, . . . , tn))↓ = e◦ and we can apply Lemma 3:
invf (invf (t)) ∈ DSf (ti) for some i, which is the desired result. �



Deducibility Constraints, Equational Theory and Electronic Money 207

h(t1) t2 . . . tn

Exp1
h(t1 � . . . � tn)↓ u2 . . . um

Exp1
h(t1 � t2 . . . � tn � u2 . . . � um)↓

⇒
h(t1) t2 . . . tn u2 . . . um

Exp1
h(t1 � t2 . . . � tn � u2 . . . � um)↓

exp(t1, t2) t3 . . . tn

Exp2
exp(t1, t2 � . . . � tn)↓ u3 . . . um

Exp2
exp(t1, t2 � . . . tn � u3 � . . . � um)↓

⇒
exp(t1, t2) t3 . . . tn u3 . . . um

Exp2
exp(t1, t2 � . . . tn � u3 � . . . � um)↓

h(t1) t2 . . .

u1 . . . um

R�

(u1 � . . . � um)↓ . . . tn

Exp1
h(t1 � t2 . . . u1 � . . . um � . . . � tn)↓

⇒
h(t1) t2 . . . u1 . . . um . . . tn

Exp1
h(t1 � t2 . . . u1 � . . . um � . . . � tn)↓

exp(t1, t2) . . .

u1 . . . um

R�

(u1 � . . . � um)↓ . . . tn

Exp2
exp(t1, t2 � . . . � u1 � . . . � um � . . . � tn)↓

⇒
exp(t1, t2) . . . u1 . . . um . . . tn

Exp2
exp(t1, t2 � . . . � u1 � . . . � um � . . . � tn)↓

t1 t2
Exp3

exp(t1, t2) t3 . . . tn

Exp2
exp(t1, t2 � . . . � tn)↓

⇒ t1

t2 . . . tn

R�

(t2 � . . . � tn)↓
Exp3

exp(t1, t2 � . . . � tn)↓

t1 . . .

u1 . . . um

R◦
(u1 ◦ . . . ◦ um)↓ . . . tn

R◦
(t1 ◦ . . . ◦ u1 ◦ . . . ◦ um ◦ . . . ◦ tn)↓

⇒
t1 . . . u1 . . . um . . . un

R◦
(t1 ◦ . . . ◦ u1 ◦ . . . ◦ um ◦ . . . ◦ tn)↓

u1 . . . um

R+
(u1 + . . . + um)↓

Rh

h((u1 + . . . + um)↓)

⇒

u1
Rh

h(u1) . . .

um

Rh

h(um)
R•

(h(u1 + . . . + um))↓

u1 . . . um

R◦
(u1 ◦ . . . ◦ um)↓

RJ◦
J◦(u1 ◦ . . . ◦ um)↓

⇒

u1
RJ◦

J◦(u1)↓ . . .

um

RJ◦
J◦(um)↓

R◦
J◦(u1 ◦ . . . ◦ um)↓

u
Rh

h(u) v1 · · · vn

Exp1
h(u � v1 � . . . � vn)↓

⇒

u v1 · · · vn

R�

(u � v1 � . . . � vn)↓
Rh

h(u � v1 � . . . � vn)↓

Fig. 2. Proof normalization rules

Lemma 8. If t is obtained by a decomposition rule of I2, then the premises can
be written h(t1), t2, . . . , tn, t = h(u) and there an index i such that ti = e
 or
u ∈ DS
(ti).

Proof. By definition, only Exp1 can be a decomposition: the premises are h(t1),
t2, . . . , tn and the conclusion is h(u) with u = t1 � . . . � tn↓. Now, if top(u) �= �,
by definition, the rule R
 with premises t1, . . . , tn and conclusion u is a decom-
position. By Lemma 7, u = e
 or there is an index i such that u ∈ DS
(ti). �

Lemma 9. For any set of terms in normal form, F (F (T )) = F (T ).
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Proof. F (T ) ⊆ F (F (T )) by definition. For the converse inclusion, first terms in
Sub(F (T )) which are not in Sub(T ) are always in F (T ). Now, we investigate
each other case:

– If t = h(u) with u ∈ Sub(F (T )) and top(u) = +. Then it follows that
u ∈ Sub(T ) or u = inv+(v) with v ∈ Sub(T ), hence t ∈ F (T )

– If t = h(inv+(u)) with u ∈ Sub(F (T )) and top(u) = +, it is the same as
above.

– If t = inv◦(u) with u ∈ Sub(F (T )) and top(u) = ◦ ∈ {�, +}, then either
u ∈ Sub(T ) or inv◦(u) ∈ Sub(T ). In both cases t = inv◦(u) ∈ F (T ).

– If t = h(u) with u ∈ DS◦(v), top(u) = ◦ and v ∈ Sub(F (T )) and ◦ ∈ {�, +}
then either v or inv◦(v) is in Sub(T ). In the first case we get t ∈ F (T ). In
the latter case inv◦(u) ∈ DS◦(inv◦(v)), hence t = h(inv◦(inv◦(u))) ∈ F (T ).

– If t = inv◦(u), v ∈ Sub(F (T )), top(v) = ◦ ∈ {�, +, •} and u ∈ DS◦(v), again
either v ∈ Sub(T ) or inv◦(v) ∈ Sub(T ). In the first case we conclude directly
t ∈ F (T ). In the latter case, inv◦(u) ∈ DS◦(inv◦(v)), hence t ∈ Sub(T )

– The last case is similar to previous ones. �

4.4 Proof of our Locality Result

We are now able to prove our locality result.

Proposition 2. The inference system I1 ∪ I2 is F -local.

Proof. We consider a minimal (in terms of size) normal proof of t from the set
of hypotheses H . We prove by induction on the proof size that, if the last rule
is a composition, then all terms in the proof belong to F (H) ∪ F (t) and, if the
last rule is a decomposition, then all terms in the proof belong to F (H). In the
base case, the proof consists of an axiom only and the result follows. Otherwise,
we distinguish cases depending on the last rule used in the proof.

The last rule is Rh. If top(t) �= •, then we simply have to apply the induction
hypothesis: t = h(u) and all terms in the proof of u are in F (H) ∪ F (u),
hence in F (H) ∪ F (t).

Now, if t = h(u), then, by proof normalization, u cannot be obtained by
R+. It follows that it must be obtained by decomposition (or possibly RJ+).
In any case, u ∈ F (H) by induction hypothesis and, since top(u) = +,
u ∈ Sub(H) ∪ J+(Sub(H)). It follows that t, u ∈ F (H).

If the last rule is a composition R◦ with ◦ ∈ {+, �, •}

Π1
Rf1

u1 . . .

Πn
Rfn

un
R◦

t

Consider the set S of indices i such that top(ui) = ◦ (we may rule out the
cases where ui = e◦, which correspond to non-minimal proofs). By lemma 4,
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for every i /∈ S, either ui ∈ DS◦(t) or there is an index j such that inv◦(ui) ∈
DS◦(uj). In the first case ui ∈ Sub(t). In the second case, we claim that if
◦ ∈ {�, +}, then uj must be obtained by decomposition: fj /∈ {◦, J◦} by
proof normalization and therefore top(uj) = ◦ implies it is obtained by
decomposition (this does not hold when ◦ = •). In case ◦ = •, either uj is
obtained by decomposition, or uj = h(vj) is obtained by Rh and, by proof
normalization and since top(uj) = •, vj must be obtained by decomposition
and top(vj) = +.

By induction hypothesis, uj ∈ F (H) or uj = h(vj) and vj ∈ F (H),
top(vj) = +, in which case, again uj ∈ F (H). And inv◦(ui) ∈ Sub(uj),
hence ui ∈ F (H).

To sum up: for every i, either top(ui) �= ◦ and ui ∈ Sub(t) ∪ F (H) or
else top(ui) = ◦ and ui ∈ F (H). By the induction hypothesis, for every i,
all terms in the proof of ui belong to F (H) or to F (ui). Hence, by lemma 9,
all terms in the proof of t belong to F (t) ∪ F (H).

The last rule is RJ◦. Let t = J◦(u)↓. By proof normalization, u is not ob-
tained by R◦ and by minimality, it cannot be obtained by RJ◦ . Then, if
top(u) ∈ {◦, J◦}, u must be obtained by decomposition or (Rh and ◦ = •).
In both cases u ∈ F (H) (either the induction hypothesis or the first case
above).

Now, if top(u) /∈ {◦, J◦}, t = J◦(u) and u ∈ Sub(t). We conclude by
applying the induction hypothesis.

The last rule is a decomposition R◦, ◦ ∈ {�, •, +}. Let t = t1◦ . . .◦tn↓. We
discard the cases in which ti = e◦ for some i (there is a simpler proof). Then
the rule being a decomposition, by lemma 7, t ∈ Sub(ti) for some i.

If t1, . . . , tn ∈ F (H), then by induction hypothesis, we get a proof in
which all terms are in F (H). Otherwise, let us assume that some tj is not
in F (H), hence, by induction hypothesis, tj is obtained by composition.

By contradiction, assume top(tj) = ◦. Then, because it is obtained by
composition and because of proof normalization rules, either tj is obtained
by RJ◦ or ◦ = • and tj is obtained by Rh. In the first case, tj = J◦(uj)↓ and,
by proof normalization, uj is not obtained by R◦, while top(uj) = ◦. This
implies that uj is obtained by decomposition, and therefore, by induction
hypothesis, uj ∈ F (H), which in turn contradicts tj /∈ F (H). In the second
case, tj = h(uj) and top(uj) = +. By proof normalization, uj cannot be
obtained by R+. It follows that uj is obtained by decomposition (or else by
RJ+). Again, this will yield a contradiction with tj /∈ F (H). Similarly, we
rule out top(tj) = J◦.

Now, top(tj) /∈ {◦, J◦} and, by lemma 3, either tj = e◦ (in which case
there is a simpler proof) or tj = t (in which case there is a simpler proof)
or else there is an index k �= j such that inv◦(tj) ∈ DS◦(tk). Moreover, we
cannot have tk = inv◦(tj): there would be a simpler proof, simply discarding
tj and tk from the proof of t. Therefore top(tk) = ◦.

Now, we can reason as for tj : by proof normalization, tk must have
been obtained by decomposition and therefore, by induction hypothesis,
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tk ∈ F (H). Then tj ∈ F (H) (since inv◦(tj) ◦ u ∈ F (H) for some u). This is
again a contradiction.

It follows that all ti’s must be in F (H).
The last rule is a decomposition Exp1

h(t1) t2 . . . tn

h(t1 � . . . � tn)↓

and t = h(u) = h(t1 � . . . � tn)↓ and moreover, top(u) �= �.
By proof normalization, h(t1) can only be obtained by R•, or a decom-

position rule distinct from E1. In all cases, either h(t1) ∈ F (H) or else
top(t1) = +.

Similarly, none of the ti’s (i ≥ 2) can be obtained by R
. Let ui = ti if ti
is not obtained by RJ� and ui = inv
(ti) otherwise. Assume by contradiction
that, for some i, ui /∈ F (H). Then, in particular, by induction hypothesis,
ui is obtained by composition. By proof normalization, it cannot be by a
rule R
, RJ� , hence top(ui) �= � and thus top(ti) �= �. But then, by lemma
4, either ti ∈ DS
(u) or else inv
(ti) ∈ DS
(tj) for some j. We cannot
have ti = inv
(tj): there would be a simpler proof. Therefore, if inv
(ti) ∈
DS
(tj), we must have top(tj) = �, hence the corresponding uj cannot be
obtained by composition. It follows that, for every i, either ui ∈ F (H) or
else inv
(ti) ∈ DS
(tj) and uj ∈ F (H). In the latter case, either uj = tj
and then inv
(ti) ∈ Sub(tj) implies ti ∈ F (H). or else uj = inv
(tj) and
ti ∈ DS
(uj) ⊆ F (H).

In all cases, for every i, ti ∈ F (H).
By lemma 8, there is an index i such that u ∈ DS
(ti). Now, t �= ti and

t �= h(ti) (otherwise there is a simpler proof). Hence top(ti) = �. It follows
that ti ∈ Sub(H) ∪ J
(Sub(H)). Then u ∈ Sub(H) ∪ J
(Sub(H)) and there
exists a v such that u � v ∈ Sub(H): t = h(u) ∈ F (H).

The last rule is a composition Exp1. We use the same notations as in the
previous case. By proof normalization, for every i, ti∈F (H) or else top(ti) �=
�. We apply again lemma 4: if ti /∈ F (H), then either inv
(ti) ∈ DS
(tj) for
some j �= i or else tj ∈ DS
(u). In the first case, we will have again ti ∈ F (H)
since tj �= inv
(ti) by minimality and therefore tj ∈ F (H). In the end, for
every i > 1, either ti ∈ F (H) or ti ∈ F (t).

For h(t1), the reasoning is the same as in the previous case: either
top(t1) �= � or h(t1) is obtained by decomposition.

The last rule is Exp2

exp(t1, t2) t3 . . . tn

exp(t1, t2 � . . . � tn)↓
We let u = t2 � . . . � tn↓

In this case, t2, t3, . . . , tn play exactly the same roles as t1, . . . in the Exp1

case. It is actually even simpler: exp(t1, t2) cannot be obtained by a com-
position (by proof normalization), hence exp(t1, t2) ∈ Sub(H). Concerning
t3, . . . , tn, for each index i, either ti ∈ F (H) or else ti ∈ DS
(u). So, each
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of the premises is either in F (H) or in F (t) and it suffices to apply the
induction hypothesis (together with lemme 9).

The last rule is Exp3. In this case, the last rule is a composition rule and the
two premises are in Sub(t). It suffices to apply the induction hypothesis. �

5 Conclusion and Future Works

This paper is only one of the steps on the way of solving the case study. We
only showed that, for a passive intruder, the security problem can be solved in
PTIME.

The next step (on which we are currently working) is to consider an active in-
truder. This means solving deducibility constraints modulo the equational theory
of the electronic purse.

In this context, we will use properties of the rewrite system, for instance the
finite variant property. That is why the rewrite rules are oriented in an unusual
way, which introduces some technical complications.
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Abstract. The Operational Transformation (OT) approach is a tech-
nique for supporting optimistic replication in collaborative and mobile
systems. It allows the users to concurrently update the shared data and
exchange their updates in any order since the convergence of all replicas,
i.e. the fact that all users view the same data, is ensured in all cases.
However, designing algorithms for achieving convergence with the OT
approach is a critical and challenging issue. In this paper, we address
this issue for the important case where the shared data has a linear
structure such as lists, texts, ordered XML trees, etc. We analyze the
problem and we propose a generic solution with its formal analysis. We
also show in this work how to support the formal design of an OT algo-
rithm with a rewrite-based theorem prover. This theorem prover enables
us to envisage the large number of cases required for the correctness
proof of the algorithm. Since the manual proofs of all previously pub-
lished algorithms were wrong, this shows the decisive advantage of using
an automatic prover in this context.

1 Introduction

Users involved in collaborative and mobile environments generally work on repli-
cas of shared data. During disconnection periods, they can concurrently execute
updates on replicas. This leads to potentially divergent replicas (i.e. different
states). One of the main issues in such environments is to maintain consistency
(or convergence) among replicas after reconnection. Originating from real-time
groupware research [7], the Operational Transformation (OT) approach provides
an interesting solution [8,17] to this problem. Using this approach, after recon-
nection, a user A might get an operation op previously executed during dis-
connection by some other user B on a replica of the shared data. Rather than
executing op “as is” on his replica, User A may have to execute a variant of op,
say op′ – called a transformation of op – that intuitively intends to achieve the
same effect as op. When the transformed operations are executed, they create
the illusion that all operations have been executed in the intended execution
context and in the intended order.
� UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP. Campus Scientifique, BP 239, 54506
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Compared to other replication systems [20], the advantages of the OT ap-
proach are: (i) it enables an unconstrained concurrency, i.e. it does not require
any global order on concurrent operations unlike traditional consistency criteria
such as linearizability [9]; (ii) it transforms operations to run in any order even
when they do not naturally commute; (iii) it produces a convergence state that
precisely preserves the intentions of all the operations executed during disconnec-
tion periods. Many collaborative applications are based on the OT approach such
as Joint Emacs [18] a groupware based on text editor Emacs, CoWord [26] (a
collaborative word processor) and CoPowerPoint [23] (a real-time collaborative
multimedia slides creation and presentation system).

The OT approachconsists of application-dependent transformationalgorithms.
Thus, for every possible pair of concurrent operations, the application program-
mer has to specify how to merge these operations regardless of reception order.
According to Ressel et al. [18], an OT algorithm needs to fulfill two conditions
(which will be detailed in Section 2) in order to ensure convergence. Finding such
an OT algorithm and proving that it satisfies the convergence conditions is con-
sidered as a task, because this proof is often unmanageably complicated [24] due
to the large number of cases to envisage. To overcome this problem we have used
the Spike theorem prover [4,21] for automating the verification process. Since the
OT algorithms are based on editing operations, that are easily expressed with con-
ditional rewrite rules, we found that the Spike theorem prover is well-suited for
this verification task. Indeed it has permitted us to detect bugs in manywell-known
OT algorithms from the literature [11,12]. Moreover, the Spike prover has already
been intensively applied to the design and debugging of a file synchronizer [17] dis-
tributed with the industrial collaborative development environment, LibreSource
Community1, proposed by Artenum Company.

However, although in theory [18], the OT approach is able to achieve conver-
gence in the presence of arbitrary transformation orders, some types of collab-
orative objects still represent a serious challenge for the application of the OT
approach. Indeed, the convergence property has never been achieved properly
when the collaborative object can be given a linear structure (such as a list, a
text or an ordered XML tree): all proposed OT algorithms [7,18,25,22,12,15] for
these datatypes fail to meet the convergence property. In this paper, we analyse
thoroughly the source of these failures and we propose a new OT algorithm for
achieving the convergence. Unlike previous works we have been able to give a
formal verification thanks to a theorem prover. Furthermore, our OT algorithm
is generic since it can be applied to any data with a linear structure.

This paper is organized as follows. We present the operational transformation
model in Section 2. The ingredients of our formalization for the linear collab-
orative object into a theorem prover language are given in Section 3. In this
section, we analyze convergence problems that still remain and sketches an ab-
stract solution. Section 4 presents the ingredients of our solution giving a new OT
algorithm for the linear collaborative object. Section 5 gives the formal analysis
of this algorithm. Section 6 discusses related work, and concludes.

1 http://dev.libresource.org

http://dev.libresource.org
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2 Operational Transformation Approach

2.1 The Model

OT is an optimistic replication technique which allows many users (or sites) to
concurrently update the shared data and next to synchronize their divergent
replicas in order to obtain the same data. The updates of each site are executed
on the local replica immediately without being blocked or delayed, and then
are propagated to other sites to be executed again. Accordingly, every update is
processed in four steps: (i) generation on one site; (ii) broadcast to other sites;
(iii) reception on one site; (iv) execution on one site.

The shared object: We deal with a shared object that admits a linear struc-
ture. To represent this object we use the list abstract data type. A list is a finite
sequence of elements from a data type E . This data type is only a template
and can be instantiated by many other types. For instance, an element may be
regarded as a character, a paragraph, a page, a slide, an XML node, etc. Let L
be the set of lists.

The primitive operations: It is assumed that a list state can only be modified
by the following primitive operations: (i) Ins(p, e) which inserts the element e
at position p; (ii) Del(p) which deletes the element at position p. We assume
that positions are given by natural numbers. The set of operations is defined as
follows: O = {Ins(p, e)|e ∈ E and p ∈ N} ∪ {Del(p)|p ∈ N}. Since the shared
object is replicated, each site will own a local state l that is altered only by
local operations. The initial state, denoted by l0, is the same for all sites. The
function Do : O × L → L, computes the state Do(o, l) resulting from apply-
ing operation o to state l. We say that o is generated on state l. We denote
by [o1; o2; . . . ; on] an operation sequence. Applying an operation sequence to a
list l is recursively defined as follows: (i) Do([], l) = l, where [] is the empty se-
quence and; (ii) Do([o1; o2; . . . ; on], l) = Do(on, Do(. . . , Do(o2, Do(o1, l)))). Two
operation sequences seq1 and seq2 are equivalent, denoted by seq1 ≡ seq2, iff
Do(seq1, l) = Do(seq2, l) for all lists l.

Definition 1. Let an operation o1 be generated at site i and an operation o2 be
generated at site j. We say that o2 causally depends on o1, denoted o1 → o2, iff:
(i) i = j and o1 was generated before o2; or, (ii) i �= j and the execution of o1

at site j has happened before the generation of o2.

Definition 2. Two operations o1 and o2 are said to be concurrent, denoted by
o1 ‖ o2, iff neither o1 → o2 nor o2 → o1.

We assume that concurrency between operations is detected by one of the many
known techniques [20]. Our analysis is independant from the chosen one.

In the following, we define the conflict relation between two insert operations:

Definition 3. (Conflict Relation) Two insert operations o1 = Ins(p1, e1)
and o2 = Ins(p2, e2), generated on different sites, conflict with each other iff:
(i) o1 ‖ o2; (ii) o1 and o2 are generated on the same list state; and, (iii) p1 = p2,
i.e. they have the same insertion position.
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site 1
“efecte”

site 2
“efecte”

op1 = ins(1, f)

		������������ op2 = del(5)
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���
���“effecte” “efect”

del(5) ins(1, f)

“effece” “effect”

Fig. 1. Incorrect integration
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“effecte” “efect”

T (op2, op1) = del(6) ins(1, f)

“effect” “effect”

Fig. 2. Integration with transformation

2.2 Transformation Principle

A crucial issue when designing collaborative objects with a replicated archi-
tecture and arbitrary messages communication between sites is the consistency
maintenance (or convergence) of all replicas. To illustrate this problem, consider
the following example:

Example 1. Consider the following group text editor scenario (see Figure 1):
there are two users (on two sites) working on a shared document represented by
a sequence of characters. These characters are addressed from 0 to the end of
the document. Initially, both copies hold the string “ efecte”. User 1 executes
operation op1 = Ins(1, f ) to insert the character f at position 1. Concurrently,
user 2 performs op2 = Del(5) to delete the character e at position 5. When
op1 is received and executed on site 2, it produces the expected string “effect”.
But, when op2 is received on site 1, it does not take into account that op1 has
been executed before it and it produces the string “effece”. The result at site 1
is different from the result of site 2 and it apparently violates the intention of
op2 since the last character e, which was intended to be deleted, is still present
in the final string. Consequently, we obtain a divergence between sites 1 and
2. It should be pointed out that even if a serialization protocol [7] was used to
require that all sites execute op1 and op2 in the same order (i.e. a global order on
concurrent operations) to obtain an identical result effece, this identical result
is still inconsistent with the original intention of op2.

To maintain convergence, the OT approach has been proposed by [7]. When User
X gets an operation op that was previously executed by User Y on his replica of
the shared object User X does not necessarily integrate op by executing it “as
is” on his replica. He will rather execute a variant of op, denoted by op′ (called
a transformation of op) that intuitively intends to achieve the same effect as op.
This approach is based on a transformation function T that apply to couples of
concurrent operations defined on the same state.

Example 2. In Figure 2, we illustrate the effect of T on the previous example.
When op2 is received on site 1, op2 needs to be transformed according to op1
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as follows: T ((Del(5), Ins(1, f )) = Del(6). The deletion position of op2 is in-
cremented because op1 has inserted a character at position 1, which is before
the character deleted by op2. Next, op′2 is executed on site 1. In the same way,
when op1 is received on site 2, it is transformed as follows: T (Ins(1, f ), Del(5)) =
Ins(1, f ); op1 remains the same because f is inserted before the deletion position
of op2.

In the OT approach, every site is equiped by two main components [7,18]:
the integration component and the transformation component. The integration
component is responsible for receiving, broadcasting and executing operations.
It is rather independent of the type of the collaborative objects. Several inte-
gration algorithms have been proposed in the groupware research area, such as
dOPT [7], adOPTed [18], SOCT2,4 [22,27] and GOTO [24]. The transformation
component is a set of OT algorithms which is responsible for merging two con-
current operations defined on the same state. Every OT algorithm is specific to
the semantics of a collaborative object. Every site generates operations sequen-
tially and stores these operations in a stack also called a history. When a site
receives a remote operation op, the integration component executes the following
steps:

1. from the local history it determines the sequence seq of operations that are
concurrent to op;

2. it calls the transformation component in order to get operation op′ that is
the transformation of op according to seq;

3. it executes op′ on the current state;
4. it adds op′ to the local history.

In this paper, we only deal with the design of OT algorithms for linear col-
laborative objects such as lists, texts or ordered XML trees.

2.3 Transformation Algorithm

We present now a well known transformation algorithm designed by Ellis and
Gibbs [7] who have introduced the OT approach.

This algorithm allows to synchronize a collaborative text object, shared by two
or more users. There are two editing operations: Ins(p, c, pr) to insert a character
c at position p and Del(p, pr) to delete a character at position p. Operations
Ins and Del are extended with another parameter pr2. This one represents a
priority scheme that is used to solve a conflict occurring when two concurrent
insert operations were originally intended to insert different characters at the
same position. Note that concurrent editing operations have always different
priorities. In Figure 3, we give the four transformation cases for Ins and Del
proposed by Ellis and Gibbs. There are two interesting situations in the first
case (Ins and Ins). The first situation is when the arguments of the two insert

2 This priority is the site identifier where operations have been generated. Two oper-
ations generated from different sites have always different priorities.
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T(Ins(p1, c1, pr1), Ins(p2, c2, pr2)) =
if p1 < p2 then return Ins(p1, c1, pr1)
elseif p1 > p2 then return Ins(p1 + 1, c1, pr1)

elseif c1 == c2 then return Nop()
elseif pr1 > pr2 then return Ins(p1 + 1, c1, pr1)

else return Ins(p1, c1, pr1)
endif ;

T(Ins(p1, c1, pr1), Del(p2, pr2)) =
if p1 < p2 then return Ins(p1, c1, pr1)
else return Ins(p1 − 1, c1, pr1)
endif ;

T(Del(p1, pr1),Ins(p2, c2, pr2)) =
if p1 < p2 then return Del(p1, pr1)
else return Del(p1 + 1, pr1)
endif ;

T(Del(p1, pr1),Del(p2, pr2)) =
if p1 < p2 then return Del(p1, pr1)
elseif p1 > p2 then return Del(p1 − 1, pr1)

else return Nop()
endif ;

Fig. 3. Transformation function defined by Ellis and Gibbs [7]

operations are equal (i.e. p1 = p2 and c1 = c2). In this case the function T
returns the idle operation Nop that has a null effect on a text state 3. The
second interesting situation is when only the insertion positions are equal (i.e.
p1 = p2 but c1 �= c2). Such conflicts are resolved by using the priority order
associated with each insert operation. The insertion position will be shifted to
the right and will be (p1 + 1) when Ins has a higher priority. The remaining
cases for T are quite simple.

2.4 Partial Concurrency Problem

Definition 4. Let seq be a sequence of operations. Transforming any editing
operation o according to seq is denoted by T ∗(o, seq) and is recursively defined
as follows:

T ∗(o, []) = o where [] is the empty sequence;
T ∗(o, [o1; o2; . . . ; on]) = T ∗(T (o, o1), [o2; . . . ; on])

We say that o has been concurrently generated according to all operations of seq.

3 The definition of T is completed by: T (Nop, op) = Nop and T (op,Nop) = op for
every operation op.
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3 = Ins(2, e)

op′
2 = T (op2, T (op3, op1))

= Ins(1, f)

“afefect” “afefect”

Fig. 5. Correct application of T

Definition 5. Two concurrent operations o1 and o2 are said to be partially
concurrent iff o1 is generated on list state l1 at site 1 and o2 is generated on list
state l2 at site 2 with l1 �= l2.

In case of partial concurrency situation the transformation function T may lead
to data divergence. The following example illustrates this situation.

Example 3. Consider two users trying to correct the word “fect” as in Figure 4.
User 1 generates two operations op1 and op2. User 2 concurrently generates
operation op3. We have op1 → op2 and op1 ‖ op3, but op2 and op3 are partially
concurrent as they are generated on different text states. At site 1, op3 has to
be transformed against the sequence [op1; op2], i.e. op′3 = T ∗(op3, [op1; op2]) =
Ins(2, e). The execution of op′3 gives the word “afefect”. At site 2, transforming
op1 against op3 gives op′1 = op1 = Ins(0, a) and transforming op2 against op3

results in op′2 = Ins(2, f) whose the execution leads to the word “aeffect” which
is different from what is obtained at site 1. This divergence situation is due to
a wrong application of T to the operations op2 and op3 at site 2. Indeed, the
function T requires that both operations are concurrent and defined on the same
state. However, op3 is generated on “fect” while op2 is generated on “afect”.

In order to solve this partial concurrency problem, op2 should not be di-
rectly transformed with respect to op3 because op2 causally depends on op1 (see
Figure 5). Instead op3 must be transformed against op1 and next op2 may be
transformed against the result.

2.5 Convergence Conditions

Using an OT algorithm requires us to verify two conditions [18]. For all o, o1

and o2 pairwise concurrent operations:

• Condition C1: [o1 ; T (o2, o1)] ≡ [o2 ; T (o1, o2)].
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• Condition C2: T ∗(o, [o1 ; T (o2, o1)]) = T ∗(o, [o2 ; T (o1, o2)]).

Condition C1 defines a state identity and ensures that if o1 and o2 are con-
current, the effect of executing o1 before o2 is the same as executing o2 before
o1. This condition is necessary but not sufficient when the number of concurrent
operations is greater than two.

Condition C2 ensures that transforming o along equivalent and different opera-
tion sequences will give the same operation. In previous work [18,16], the authors
have proved that conditions C1 and C2 are sufficient to ensure the convergence
property for any number of concurrent operations which can be executed in
arbitrary order.

Verifying that a given OT algorithm satisfies C1 and C2 is a computationally
expensive problem even for a simple text document. Using a theorem prover
to automate the verification process is needed and would be a crucial step for
building correct collaborative objects based on OT approach [12,13].

Using a theorem-proving approach [12,13], we have detected that the function
T of Figure 3 contains some subtle bugs that lead to divergence situations. These
situations are detailed in the following section.

3 Modeling and Verifying the Linear Collaborative
Object

3.1 Formal Specification

We simply represent a linear collaborative object with algebraic specifications.
So we define the List sort which admits two constructors: (i) nil (i.e., an empty
list); (ii) cons(l,e) (i.e., a list composed by an element e added to the end of
the list l). The List sort is parameterized by the element sort. This sort may be
instanciated in various ways: character, paragraph, page, XML node.

We consider that all “operations” of the linear collaborative object are of sort
Opn which admit three constructors:

– Ins(p,e,pr) inserts element e at position p,
– Del(p) deletes the element at position p,
– Nop is the idle operation.

We assume that the sort of the operation priority is natural numbers. In order
to define the effect of operations on lists, we define a function Do : List Opn
-> List by a set of conditional rewrite rules. For example, the change caused by
the operation Del(p) is recursively defined as follows, where s is the successor
on natural numbers and Length(l) returns the length of the list l:

Do(nil, Del(p)) = nil;
s(p) = Length(l) => Do(cons(l,e),Del(p)) = l;
(s(p) > Length(l))=true => Do(cons(l,e),Del(p)) = cons(l,e);
(s(p) < Length(l))=true => Do(cons(l,e),Del(p)) =
cons(Do(l,Del(p)),e)
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An OT algorithm is defined by a function on two arguments with profile
T : Opn Opn -> Opn. For example, the following transformation:

T (Del(p1),Ins(p2, c2, pr2)) = if p1 > p2 then return Del(p1 + 1) else return
Del(p1)

is defined by two conditional rules:

(p1 > p2) = true => T(Del(p1),Ins(p2,e2,pr2)) = Del(p1+1)
(p1 > p2) = false => T(Del(p1),Ins(p2,e2,pr2)) = Del(p1)

In all applications we have encountered we have been able to express the
transformation functions by conditional rewrite rules in a straightforward and
almost mechanical way.

3.2 Specification of Conditions C1 and C2

We now express the copy convergence conditions as conjectures to be proved
in our algebraic setting. Convergence conditions C1 and C2 are formulated as
follows.

Let Pr : Opn -> Nat be a function that gives for every operation its priority.

Definition 6. (Condition C1)

Pr(op1) <> Pr(op2) =>
Do(Do(l, op1), T(op2,op1)) = Do(Do(l,op2),T(op1,op2))

The precondition Pr(op1) <> Pr(op2) expresses simply that operations op1
and op2 are concurrent.

Definition 7. (Condition C2)

Pr(op) <> Pr(op1), Pr(op) <> Pr(op2), Pr(op1) <> Pr(op2) =>
T(T(op,op1),T(op2,op1)) = T(T(op, op2),T(op1,op2))

3.3 The Theorem Prover: Spike

To automatically check the copy convergence conditions C1 and C2 we rely
on Spike [4,21], a rewrite-based induction theorem prover. Spike was em-
ployed for the following reasons: (i) its high automation degree; (ii) its ability
to perform case analysis (to deal with multiple methods and many transforma-
tion cases); (iii) its ability to find counter-examples; (iv) its built-in decision
procedures [1] that allow to automatically eliminate arithmetic tautologies. This
theorem prover has been successfully applied to complex case-studies [19,2]. The
test set mechanisms that are employed to detect counter-examples in early stages
of a proof attempt has been inspired by the inductionless induction paradigm
(see e.g. [14]). In order to motivate our use of Spike , we begin with a short
description of its proof engine.
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Principles. Spike ’s proof method is an extension of Cover Set Induction with
different reasoning techniques, most of them based on conditional rewriting [6],
case analysis and subsumption. The method combines the advantages of explicit
induction (e.g. less failure) and of proofs by consistency [4,21] (ability to detect
counter-examples).

In a nutshell, the method is parameterized by a set of axioms Ax, and proceeds
by modifying incrementally two sets of clauses, (E, H), where E contains the
conjectures to be checked and H contains clauses, previously in E, that have been
reduced. The method is modelled by means of the relation (E, H)

Spike−−−−→
Ax

(E′, H ′)

which is described below. We say that a formula φ is an inductive theorem w.r.t.
Ax if there exists a finite derivation of the form ({φ}, ∅) Spike−−−−→

Ax
· · · Spike−−−−→

Ax
(∅, H);

we call this derivation a proof of φ.

Proof system. Given a set of conditional rules R derived from the orientation
of Ax, Spike computes covering substitutions which is a family of substitutions
covering all possible cases for induction variables. These substitutions are ap-
plied to conjectures generating special instances which are then simplified by
rules, lemmas and induction hypotheses. This instantiation/simplification oper-
ation creates new subgoals that are processed in the same way in the following
steps. Concretely, the relation (E ∪{C}, H)

Spike−−−−→
Ax

(E′, H ′), that transforms the

current conjecture C, is defined by two rules: Generate and Simplify. The
Generate inference rule computes appropriate covering substitutions which
are then applied to C. These so-built instances are then simplified by rules and
lemmas and appropriate instances of E and H . The set of induction hypotheses
available for the simplification of the cover-set instance Cσ are ad-hoc instances
of the current set of E, {C} and H , strictly smaller (w.r.t. a decreasing order
over clauses ≺c) than Cσ. The Simplify inference rule transforms a conjecture
into a (potentially empty) set of new and simpler conjectures.

Strategies. Spike offers the user some limited, but useful, mechanisms to interact
with the proof engine. For each conjecture, the user can i) introduce intermedi-
ate lemmas that are first proven automatically and then used to establish the
conjecture; ii) define a particular proof strategy that gives the order of execution
for inference rules; iii) influence the inner mechanisms of some inference rules;
for example the user can specify the order in which reducible terms are rewritten
or the way the induction variables are chosen. These interaction mechanisms are
crucial to guarantee that proof runs finish with success—when an empty set of
conjectures is obtained. Of course, not all proof runs are successful; they may
also diverge, or finish with failure; in the latter case the prover provides (under
certain conditions) a counterexample to the initial conjectures.

Soundness. Spike ’s inference engine is sound that is every conjecture that
is successfully processed is valid in the initial model of the given specification;
Moreover it is refutationally sound, i.e. the detection of a counterexample implies
the existence of a counterexample in the initial conjectures [3].
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3.4 Convergence Problems

We present the divergence situations discovered when checking the convergence
conditions C1 and C2 for the function T of Figure 3 by Spike .

Checking Proofs. In the following we describe how Spike checks the conjec-
ture C1:

Pr(op1) <> Pr(op2) =>
Do(Do(l, op1), T(op2,op1)) = Do(Do(l,op2),T(op1,op2))

Firstly, a Generate rule is applied and 18 instances are produced after the
variables l, op1 and op2 are replaced respectively with the elements of the test
set covering all cases of sort List, i.e. {nil, cons(l,e)}, and sort Opn, i.e.
{Ins(p1,e1, pr1), Del(p2), Nop}. In order to store the initial conjecture,
we need to simplify by rewriting or eliminate these instances.

Consider the instance where l, op1 and op2 are substituted respectively by
nil, Ins(p1,e1, pr1) and Del(p2). We obtain the following conjecture:

Do(Do(nil, Ins(p1,e1, pr1)), T(Del(p2),Ins(p1,e1, pr1))) =
Do(Do(nil,Del(p2)),T(Ins(p1,e1, pr1),Del(p2)))

A case rewriting is applied to reduce this conjecture with conditional rewrite
rules corresponding to the functions T and Do without attempting to check their
preconditions. Consider the case where the positions p1 and p2 are equal and
p1-1 is equal to zero. We obtain the following conjecture:

Do(Do(nil, Ins(p1,e1, pr1)), Del(p1 + 1)) = Do(Do(nil,Del(p1)),
Ins(p1 - 1,e1, pr1))

By rewriting we get the following inconsistency: nil = cons(nil,e1). This
means that the conjecture C1 is false.

From this inconsistency, we have derived a scenario violating the condition C1

that is depicted in Figure 6 (for clarity we have omitted the priority parameter).
There are two users: (i) user1 inserts x in position 1 (op1) while user2 concur-
rently deletes the character at the same position (op2). (ii) When op2 is received
by site 1, op2 must be transformed according to op1. So T(Del(1),Ins(1,x))
is called and Del(2) is returned. (iii) In the same way, op1 is received on site 2
and must be transformed according to op2. T(Ins(1,x),Del(1)) is called and
returns Ins(0,x). Condition C1 is violated. Accordingly, the final results on
both sites are different.

The error comes from the definition of T(Ins(p1,c1,pr1), Del(p2,pr2))
(see Figure 3). The condition p1 < p2 should be rewritten p1 <= p2. This
modification is sufficient to satisfy the condition C1.

After the above modification in order to satisfy the condition C1, we describe
now how Spike deals with the checking of conjecture C2:

Pr(op) <> Pr(op1), Pr(op) <> Pr(op2), Pr(op1) <> Pr(op2) =>
T(T(op,op1),T(op2,op1)) = T(T(op, op2),T(op1,op2))
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site 1
“abc”

site 2
“abc”

op1 = Ins(1, x)

������������ op2 = Del(1)

��������������

“axbc” “ac”

op′
2 = Del(2) op′

1 = Ins(0, x)

“axc” “xac”

Fig. 6. Scenario violating C1

site 3
“abc”

site 2
“abc”

site 1
“abc”

op1 = Ins(3, x)

 ��

op2 = Del(2)

���������
���� op3 = Ins(2, y)

�����
��������

“abcx” “ab” “abyc”

op′
3 = Ins(2, y) op′

2 = Del(3)

“aby” “aby”

op′
3 = Ins(2, x) op′′

3 = Ins(3, x)

“abxy” “abyx”

Fig. 7. Scenario violating C2

Spike generates 27 instances by substituting in all possible ways the vari-
ables op, op1 and op2 that are instantiated by the elements of the test set
{Ins(p1,e1,pr1), Del(p2), Nop}. Consider the instance where op =
Ins(p,e,pr), op1 = Ins(p1,e1,pr1) and op2 = Del(p2) and the case where
p1 = p - 1 and p2 = p. After rewriting, we get the following conjecture :

T(Ins(p+1,e,pr),Del(p+1)) = T(Ins(p-1,e,pr),Ins(p-1,e1,pr1))

Two inconsistencies are produced from this conjecture: (i) Ins(p,e) = Nop
if e = e1; (ii) Ins(p,e) = Ins(p-1, e) if e <> e1 and pr <= pr1.

Both inconsistencies lead to violation of the condition C2. Figure 7 presents
a scenario for C2 violation. In this scenario seq = [op2; op′3] and seq′ = [op3; op′2]
are two equivalent sequences. Using the function T of Figure 3 we must have
T (op1, seq) = T (op1, seq

′):

T ∗(op1, seq) = op′1 = T (T (op1, op2), op′3) = Ins(2, x)
T ∗(op1, seq

′) = op′′1 = T (T (op1, op3), op′2) = Ins(3, x)

As we can see, op′1 �= op′′1 , C2 is violated; and therefore the convergence is not
achieved. The scenario illustrated in Figure 7 is called C2 puzzle.

Analyzing the Convergence Problem. To better understand the source of
this problem, we consider the C2 puzzle (see Figure 7). There are three concur-
rent operations op1 = Ins(3, x), op2 = Del(2) and op3 = Ins(2, y) where the
insertion positions initially have the following relation: Pos(op1) > Pos(op3)
with Pos(Ins(p, c, pr)) = p.

According to Definition 3, op1 and op3 are not in conflict. In this scenario
we have two equivalent operation sequences S1 = [op2; op′3] and S2 = [op3; op′2]
where op′3 = T (op3, op2) and op′2 = T (op2, op3). The above relation between
op1 and op3 is not preserved when transforming op1 along sequence S1 since
Pos(T (op1, op2)) = Pos(op′3).
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The transformation process may lead to two concurrent insert operations
(with different initial insertion positions) to get into a false conflict situation
( the same insertion position). Unfortunately, the initial relation between the
positions of these operations is lost during their transformations with other op-
erations. However we need to know how the insert operations were generated in
order to avoid the divergence problem.

In the following, we propose a new approach to solve this divergence problem.
Intuitively, we notice that storing previous insertion positions for every trans-
formation step is sufficient to recover the original position relation between two
concurrent insert operations.

4 Our Solution

In this section, we present our approach to achieving convergence for linear
collaborative objects. Firstly, we will introduce the key concept of position word
for keeping track of insertion positions. Next, we will give our new OT function
and how this function resolves the divergence problem. Finally, we will give the
formal analysis of this algorithm.

4.1 Position Words

For any set of symbols Σ called an alphabet, Σ∗ denotes the set of words over
Σ. The empty word is denoted by ε. For ω ∈ Σ∗, then |ω| denotes the length of
ω. If ω = uv, for some u, v ∈ Σ∗, then u is a prefix of ω and v is a suffix of ω.

For every ω ∈ Σ∗, such that |ω| > 0, we denote Base(ω) (resp. Top(ω)) the
last (resp. first) symbol of ω. Thus, Top(abcde) = a and Base(abcde) = e. We
assume that Σ is totally ordered and denote the strict part of this order by >.
If ω1, ω2 ∈ Σ∗, then ω1 � ω2 is the lexicographic ordering of Σ∗ if: (i) ω1 is a
prefix of ω2, or (ii) ω1 = ρu and ω2 = ρv, where ρ ∈ Σ∗ is the longest prefix
common to ω1 and ω2, and Top(u) precedes Top(v) in the alphabetic order.

Definition 8. (p-word) We consider the natural numbers N as an alphabet.
We define the set of p words P ⊂ N∗ as follows: (i) ε ∈ P; (ii) if n ∈ N then
n ∈ P; (iii) if ω is a nonempty p-word and n ∈ N then nω ∈ P iff n− Top(ω) ∈
{0, 1,−1}.

We observe immediately that we can concatenate two p-words to get another
one if the end of the first and the origin of the second one differs of at most 1:

Theorem 1. Let ω1 and ω2 be two nonempty p-words. The concatenation of ω1

and ω2, written ω1 ·ω2 or simply ω1ω2, is a p-word iff either Base(ω1) = Top(ω2)
or Base(ω1) = Top(ω2)± 1.

For example, ω1 = 00, ω2 = 1232 and ω1ω2 = 001232 are p-words but ω3 = 3476
is not.
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Definition 9. The equivalence relation on the set of p words P is defined by:
ω1 ≡P ω2 iff Top(ω1) = Top(ω2) and Base(ω1) = Base(ω2), where ω1, ω2 ∈ P.

We can also show that this relation is a congruence using Definitions 8 and 9:

Proposition 1. The equivalence relation ≡P is a right congruence, that is, for
all ρ ∈ P: if ω1 ≡P ω2 then ω1ρ ≡P ω2ρ

4.2 OT Algorithm

In order to preserve the order relation between two insert operations, we propose
to store all different positions occupied by an element during the transformation
process. It means that instead of the single position we maintain a stack of
positions called a p-word. Each time an operation is transformed we push the last
position before transformation in the p-word. The size of the stack is proportional
to the number of concurrent operations. In Figure 8 we give the details of our new
OT function. When two insertion operations insert two different elements at the
same position (they are in conflict), a choice has to be done: which element must
be inserted before the other? The solution that is generally adopted consists in
associating a priority to each insert operation (i.e., the site identifier). In our OT
function, when a conflict occurs, the character of an insertion operation whose
site identifier pr is the highest is inserted before the other.

If two p-words are identical it means that the two associated insert oper-
ations are equal. Otherwise the p-word allows to track the order relation be-
tween the two operations. We shall therefore redefine the insert operation as
Ins(p, e, w, pr) where p is the insertion position, e the element to be added, w
a p-word and pr is the site identifier. When an operation is generated, the p-
word is empty, i.e. Ins(3, x, ε, pr). When an operation is transformed and the
insertion position is changed, the original position is pushed to the p-word. For
example, T (Ins(3, x, ε, pr), Del(1)) = Ins(2, x, [3], pr) and T (Ins(2, e, [3], pr),
Ins(1, e′, ε, pr′)) = Ins(3, e, [2 · 3], pr).

We define a function PW which enables to construct p-words from editing
operations. It takes an operation as argument and returns its p-word:

PW (Ins(p, c, w, pr)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p if w = ε
pw if w �= ε and

(p = Top(w)
or p = Top(w)± 1)

ε otherwise
PW (Del(p)) = p

We define the strict part of a total order on the insert operations as follows:

Definition 10. Given two insert operations o1 = Ins(p1, e1, w1, pr1) and o2 =
Ins(p2, e2, w2, pr2) we define o1 � o2 iff one of the following conditions holds:
(i) PW (o1) ≺ PW (o2); (ii) PW (o1) = PW (o2) and pr1 < pr2.
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T(Ins(p1, c1, w1, pr1),Ins(p2, c2, w2, pr2)) =
let α1=PW (Ins(p1, c1, w1, pr1)) and α2=PW (Ins(p2, c2, w2, pr2))
if (α1 ≺ α2 or (α1 = α2 and pr1 < pr2))
then return Ins(p1, c1, w1, pr1)
elseif (α1 � α2 or (α1 = α2 and pr1 > pr2))

then return Ins(p1 + 1, c1, p1w1, pr1)
endif ;

T(Ins(p1, c1, w1, pr1),Del(p2)) =
if p1 > p2 then return Ins(p1 − 1, c1, p1w1, pr1)
elseif p1 < p2 then return Ins(p1, c1, w1, pr1)

else return Ins(p1, c1, p1w1, pr1)
endif ;

T(Del(p1),Del(p2)) =
if p1 < p2 then return Del(p1)
elseif p1 > p2 then return Del(p1 − 1)

else return Nop
endif ;

T(Del(p1),Ins(p2, c2, w2, pr2)) =
if p1 < p2 then return Del(p1)
else return Del(p1 + 1)
endif ;

Fig. 8. New OT function

For convenience of notation we also use o2 � o1 to state that o1 � o2.
Figure 9 shows how the p-words solve the C2 puzzle depicted in Figure ??.b.

When op1 is transformed according to op3, 3 > 2, so op1 is inserted after op3.
This order relation must be preserved when op′1 = T (Ins(3, x, ε, 1), Del(2)) =
Ins(2, x, [3], 1) will be transformed according to op′3. To preserve the relation
detected between op1 and op3, we must observe PW (op′1) � PW (op′3). As [2; 3] �
[2; 2] is true, the order relation is preserved.

However, there is still a problem. This solution leads to the convergence (i.e.
the same states), but C2 is not satisfied. Indeed, we can verify in Figure 9 that:

T ∗(op1, [op2; op′3]) �= T ∗(op1, [op3; op′2])

When two identical insertions operations are transformed according to two
equivalent operation sequences, their p-words may get different. If they are dif-
ferent, they can be considered as equivalent if the top and the base of their
p-words are equal. From the equivalence of p-words, we define the equivalence
of two editing operations.

Definition 11. Given two editing operations op1 and op2, we say that op1 and
op2 are equivalent and we denote it also by op1 ≡P op2 iff one of the following
conditions holds:
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site u1
“abc”

site u2
“abc”

site u3
“abc”

op1 = Ins(3, x, ε)

 ��

op2 = Del(2)

���������������� op3 = Ins(2, y, ε)

����������������

“abcx” “ab” “abyc”

op′
3 = Ins(2, y, [2]) op′

2 = Del(3)

“aby” “aby”

op′
1 = Ins(3, x, [2.3]) op′′

1 = Ins(3, x, [4.3])

“abyx” “abyx”

Fig. 9. Correct execution of C2 puzzle

1. op1 = Ins(p1, e1, w1, pr1), op2 = Ins(p2, e2, w2, pr2), e1 = e2, pr1 = pr2,
and PW (op1) ≡P PW (op2);

2. op1 = Del(p1), op2 = Del(p2) and p1 = p2.

With the above operation equivalence we can propose a weak form of the
condition C2 that is sufficient to ensure the state convergence in these situations.
This condition is called C′

2.

Definition 12. (Condition C′
2) We say T satisfies C′

2 iff T satisfies C1 and
for every concurrent editing operations op, op1 and op2

4:

T ∗(op, [op1 ; T (op2, op1)]) ≡P T ∗(op, [op2 ; T (op1, op2)])

5 Verifying C1 and C′
2

In the following, we show that C1 is satisfied in our setting using the fact that
the original relation between two concurrent insert operations is preserved by
transformation. Then we show that C′

2 is satisfied. The most of proofs have been
automatically checked by the theorem prover Spike [4].

5.1 Conservation of p-Words

In the following, we show that our OT function does not lose any information
about position words.

Lemma 1. Given an insert operation op1 = Ins(p1, e1, w1, pr1). For every edit-
ing operation op ∈ O such that op ‖ op1, PW (op1) is a suffix of PW (T (op1, op)).

4 Operations op, op1 and op2 have different priorities.
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The following theorem states that the extension of our OT function to sequences,
i.e. T ∗, does not lose any information about position words.

Theorem 2. Given an insert operation op1 = Ins(p1, c1, w1, pr1). For every
operation sequence seq, PW (op1) is a suffix of PW (T ∗(op1, seq)).

Proof. By induction on the length of seq.

We can use the position relations between insert operations as an invariant which
must be preserved when these operations are transformed and executed in all
remote sites.

Lemma 2. For all concurrent insert operations op1 and op2 and for all editing
operations op ∈ O such that op ‖ op1 and op ‖ op2:

op1 � op2 implies T (op1, op) � T (op2, op)

Proof. We have to consider two cases: op = Ins(p, c, w, pr) and op = Del(p).

The following theorem shows that the extension of our OT function to sequence,
i.e. T ∗, preserves also the invariance property.

Theorem 3. For all concurrent insert operations op1 and op2 all sequences of
operations seq:

PW (op1) � PW (op2) implies PW (T ∗(op1, seq)) � PW (T ∗(op2, seq)).

Proof. By induction on the length of seq.

5.2 Convergence Properties

Recall that the condition C′
2 means that transforming an operation along two

equivalent operation sequences will generate only equivalent operations (as op-
posed to C2). In the following, we sketch the proof that C1 and C′

2 are verified
by our transformations. The complete proofs of Theorems 4 and 5 below have
been automatically checked by the theorem prover SPIKE.

The following theorem shows that our OT function satisfies C1.

Theorem 4. For all editing operations op1, op2 ∈ O and for all list states l we
have:

Do([op1; T (op2, op1)], l) = Do([op2; T (op1, op2)], l)

Proof. Consider the following case: op1 = Ins(p1, e1, w1, pr1), op2 =
Ins(p2, e2, w2, pr2) and PW (op1) ≺ PW (op2). According to this order, e1 is
inserted before e2. If op1 has been executed then when op2 arrives it is shifted
(op′2 = T (op2, op1) = Ins(p2 + 1, c1, p2w2, pr2)) and op′2 inserts e2 to the right
of e1. Now, if op1 arrives after the execution of op2, then op1 is not shifted, i.e.
op′1 = T (op1, op2) = op1. The element e1 is inserted as it is to the left of e2.
Thus executing [op1, op

′
2] and [op2, op

′
1] on the same object state gives also the

same object state.
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Theorem 5 shows that our OT function also satisfies C′
2. This theorem means

that if T satisfies condition C1 then when transforming op1 against two equiva-
lent sequences [op2; T (op3, op2)] and [op3; T (op2, op3)] we will obtain two equiv-
alent operations according to Definition 11.

Theorem 5. If the function T satisfies C1 then for all op, op1, op2 ∈ O we
have:

T ∗(op, [op1; T (op2, op1)]) ≡P T ∗(op, [op2; T (op1, op2)]).

Proof. Consider the case where op = Ins(p, e, w, pr), op1 = Ins(p1, e1, w1, pr1),
op2 = Del(p2), p1 = p2, and p > p2 + 1. Using our OT function (see Figure 8),
we have op′1 = T (op1, op2) = Ins(p1, e1, p1w1, pr1) and op′2 = T (op2, op1) =
Del(p2+1). When transforming op against the sequence [Ins(p1, e1, w2); Del(p2+
1)] we get op′ = Ins(p, e, (p + 1)pw, pr) and when transforming op against
[Del(p2); Ins(p1, e1, p1w1)] we obtain op′′ = Ins(p, c, (p− 1)pw, pr). Operations
op′ and op′′ have the same insertion position and the same element. It remains
to show that PW (op′) ≡P PW (op′′). As p(p− 1)p ≡P p(p + 1)p and the equiv-
alence relation ≡P is a right congruence by Proposition 1 then op′ and op′′ are
equivalent.

It is easy to prove that C′
2 is sufficient for n concurrent operations defined on

the same state with n > 3.

5.3 C′
2 is Not Sufficient

In the previous section we have showed that C′
2 solves the divergence problems

when the operations are concurrent and defined on the same state. However there
exists some situations where C′

2 is not sufficient when we consider a causality
dependency between operations.

Figure 10 presents a scenario for such a situation: o1 = Ins(2, x, ε) is generated
at site 1 and o2 = Ins(2, y, ε) is generated at site 2 and it causally depends on
o3 = Del(2). When o1 arrives at site 2 it is first transformed against o3 and this
results in o′1 = T (o1, o3) = Ins(2, x, [2]). Note that at site 2 we have o2 � o′1
and so the insertion position of o′1 will be incremented after being transformed
against o2, i.e. T (o′1, o2) = Ins(3, y, [2.2]). As o2 is partially concurrent to o4,
its execution at site 3 requires a correct transformation (see Section 2.4). This
transformation results in o′2 = T (o2, T (o4, o3)) = Ins(2, y, [2]). Arriving at site
3, o1 is first transformed against the sequence [o4; o′3] and o”1 = T (o1, [o4; o′3]) =
Ins(2, y, [2]) is returned. In this case, it is clear that o”1 � o′2 (as pr1 < pr2 with
pr1 = 1 and pr2 = 2) and so the insertion position of o”1 will remain unchanged
after being transformed against o′2. This relation is different from what we have
discovered at site 2. Consequently, this variation of relation between o1 and o2

at different sites inevitably leads to the divergence situation as illustrated in
Figure 10.

In Table 1 we enumerate all cases given by Spike that lead to violation of C′
2.
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site 1
“care”

site 2
“care”

site 3
“care”

op1 = Ins(2, r, ε)

�� ��

op3 = Del(2)

���������������� op4 = Del(3)

����
��

��
��

��
��

��
��

��
��

�

“carre” “cae” “car”

op2 = Ins(2, s, ε)

���������������� op′
3 = Del(2)

“case” “ca”

op′
4 = Del(3) op′

2 = Ins(2, s, [2])

“cas” “cas”

op′
1 = Ins(3, r, [322]) op′′

1 = Ins(2, r, [2])

“casr” “cars”

Fig. 10. Divergence in the presence of causal precedence

Discussion. The C2 puzzle (see Figure 7) shows that the previous OT solutions
are unable to ensure convergence even for three concurrent operations defined on
the same state. To overcome this problem, we have proposed a weakened form
for Condition C2 in order to synchronize linear collaborative objects by our new
OT algorithm. Using the Spike theorem prover allows us to cover automatically
a large number of situations when checking this algorithm, w.r.t. the convergence
properties. We come to the conclusion that:

1. the condition C′
2 is sufficient when using n concurrent editing operations

defined on the same state (n ≥ 2), and,
2. however there are cases involving partial concurrent insert operations where

C′
2 is not sufficient for achieving this convergence property.

Consequently, we cannot plug our OT algorithm in standard integration al-
gorithms such as adOPTed [18] and SOCT2 [22]. On one hand, these algorithms
are based on C2 that is a stronger condition than C′

2, and on the other hand,
they use a concurrency detection technique that imposes a particular causality
dependency of editing operations even though the collaborative object semantics
do not require such a dependency [5].

Note that most of the problematic scenarios given by Table 1 result from the
causal dependency o3 → o2 where o3 = Del(p3) and o2 = Ins(p2, e2, w2, pr2).
However it is an artificial dependency since an insert should not depend from a
delete operation: an editing operation can only depend on insert operations. As
a matter of fact we can show that C′

2 is sufficient for ensuring the convergence
property, if we can avoid the situations listed in Table 1. We have designed in [10]
an integration algorithm for this purpose. It works by maintaining histories in a
canonical form.
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Table 1. Situations where C′
2 is not satisfied

o3
Del(p3) Del(p3) Del(p3) Ins(p3, e3, w3, pr3)

Del(p4) p1 = p2, w1 = w2,
p2 = p3

p4 = p3 + 1,
� =�

Del(p4) p1 = p2, w1 = w2,
pr1 < pr2, p4 = p2,

p3 = p4 + 1,
� =�

o4 Del(p4) p1 = p2, w1 = w2,
p1 = p4,

p4 = p3 + 1,
� =�

Del(p4) p1 = p2, p2 = p3,
p3 = p4, w1 = w2,

w2 = w3, pr1 < pr3,
pr1 < pr2,

� =�

6 Related Work and Conclusion

Several techniques have been proposed to address C2 puzzle. These can be cat-
egorized as follows:

The first approach tries to avoid the C2 puzzle scenario. This is achieved by
constraining the communication among replicas in order to restrict the space
of possible execution order. For example, the SOCT4 algorithm [27] uses a se-
quencer, associated with a deferred broadcast and a sequential reception, to
enforce a continuous global order on updates. This global order can also be
obtained by using an undo/do/redo scheme like in GOTO [24].

The second approach tries to resolve the C2 puzzle. In this case, concurrent
operations can be executed in any order, but transformation functions require
to satisfy the C2 condition. This approach has been developed in adOPTed [18],
SOCT2 [22], and GOT [25]. Unfortunately, we have proved in [12] that all pre-
viously proposed transformation functions fail to satisfy this condition.

In this paper we have pointed out correctness problems of the existing OT
algorithms used to synchronize linear collaborative objects (such as document
text or XML files) and we have proposed a solution based on a weak form of
Condition C2. Using our theorem-proving approach [12,13] we have provided a
formal analysis of our OT algorithm. Furthermore, our solution is generic since
it can be applied to any linear data-structure.

As this weak form still cannot ensure the convergence state in some cases, we
cannot plug our OT algorithm in standard integration algorithms based on the
condition C2, such as adOPTed [18] and SOCT2 [22]. So, we have designed a
new integration algorithm based only on conditions C1 and C′

2. The details of
this algorithm are given in [10].

Acknowledgment. The second author is extremely grateful to Jean-Pierre
Jouannaud for his constant support and encouragement.
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Abstract. We present on an example the framework currently under develop-
ment in the WHY/KRAKATOA/CADUCEUS platform for proving that a JAVA or
a C program is a correct implementation of some model defined by algebraic
specifications, in a modular setting.

1 Introduction

Deductive verification of properties of programs is a difficult task that has been ad-
dressed for a long time. The first significant step is due to Floyd in 1967 [1] and Hoare in
1969 [2], introducing the Floyd-Hoare logic, whose principle is to pose pre-conditions
and post-conditions on programs. These are logical assertions on program variables,
which serve as a specification: verification amounts to proving that in any state sat-
isfying the pre-condition, execution of the program leads to a state that satisfies the
post-condition. Floyd-Hoare logic rules, or weakest precondition calculus proposed by
Dijkstra in 1975 [3], provide a means to reduce this problem to checking the validity of
first-order formulas. By these means, computer assisted program verification relies on
computer-assisted theorem proving or automated deduction.

Computer-assisted theorem proving is also a difficult task with a long history. A
landmark approach is the resolution principle proposed by Robinson in 1965. Later
paramodulation and completion where proposed to reason with the equality predicate.
This leaded to the development of powerful computer tools for automated proving in
first-order logic with equality (see the CASC competitionhttp://www.cs.miami.
edu/∼tptp/CASC/ ). Another disruptive advance was the congruence closure [4]
and the combination of decision procedures for specific theories [5] leading to power-
ful tools for automated proving in first-order logic with equality and built-in theories,
in particular linear arithmetic (tools of the SMT category [6]).

But computer-assisted theorem proving was not only aimed at providing fully auto-
matic decision procedures. Starting with the AUTOMATH system in 1968, a large set
of techniques and tools have been proposed to assist a user to build some proof. In
1969, the LCF SYSTEM introduced the key notion of tactics. In 1971 appeared the
NQTHM prover by Boyer and Moore, whose descendant is now ACL2. The latter has
been especially successful for verifying circuits. Other proof assistants like COQ, IS-
ABELLE or PVS propose ways to build certified proofs, of mathematical theorems or
of programs. However, they support mainly programs that belong to the pure functional
family, not programming languages like JAVA or C which manipulate mutable data
structures, which we refer to as pointer programs.

H. Comon-Lundh et al. (Eds.): Jouannaud Festschrift, LNCS 4600, pp. 235–258, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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A different class of systems are tools for formal specification and prototyping. An
early system of this kind is OBJ, which aims at proposing a formal specification lan-
guage mainly based on first-order logic with equality. Descendants of OBJ include the
CAFEOBJ, MAUDE, and LARCH systems. Unlike a proof assistant, such a system is
more focused on engineering purposes, and proposes in particular a modular setting to
build specifications incrementally. Verification is mainly based on calling an automated
theorem prover. The B system is also of this kind, where an effort has been made to
integrate mutability features via the so-called B-machines, and the technique of refine-
ment, which allows one to develop a prototype incrementally, from an abstract view to
more and more detailed and concrete realizations.

The fast growth of the role of software in daily life leads to a growing interest in
methods which offer security verifications during the software development. However,
the techniques that emerged in industry were not of the kind of deductive verification
described above: these are approximate methods like abstract interpretation and model
checking, which do not guarantee that a software is completely free of bugs, but have
shown themselves very efficient in finding bugs. A renewal of interest in Floyd-Hoare
style techniques came from the principle of design by contract for object-oriented lan-
guages, which is based on posing pre-conditions, post-conditions but also invariants on
objects. This principle was used in the EIFFEL system, where assertions were checked
at run-time, but also statically by so-called extended static checkers like ESC-MODULA

and ESC-JAVA. Several other static checkers were proposed for JAVA: LOOP, KEY,
JACK, JIVE, etc. Similarly for C#, the SPEC# tool has been developed.

The WHY/KRAKATOA/CADUCEUS platform [7] proposes tools to perform static
verification of this kind, for JAVA source code (KRAKATOA) but also for C code
(CADUCEUS). But an originality of this platform is that a translation is performed to the
WHY language which is closer to the family of functional languages for which proof as-
sistants like COQ are powerful. Yet, there is still ongoing research around this approach
to integrate aspects of modular specification and refinement. In this paper we illustrate
these aspects on an example: priority queues, implemented by a heap data structure.
Notice that we are going to use platform features that are still under development, and
are not yet available in the distributed version. The main purpose is to illustrate how
it is possible to relate a pointer program, manipulating mutable data structures, like a
JAVA program, to a purely algebraic specification. Another purpose is to illustrate the
scientific issues that are still to be addressed.

This paper is organized as follows: in Section 2 we first summarize the platform
features we need, Section 3 presents the case study step by step, and in Section 4 we
discuss the approach and perspectives.

2 Preliminaries

2.1 The WHY/KRAKATOA/CADUCEUS Platform

The WHY/KRAKATOA/CADUCEUS platform [7] is a set of tools for deductive veri-
fication of JAVA and C source code. In both cases, the requirements are specified as
annotations in the source, in a special style of comments. For JAVA, these specifica-
tions are given in JML (the Java Modeling Language [8]) and are interpreted by the
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KRAKATOA tool. For C, we designed our own specification language, largely inspired
from JML. Those are interpreted by the CADUCEUS tool. The tools are available as
open source software at http://why.lri.fr/.

The general approach is to generate Verification Conditions (also called proof oblig-
ations): logical formulas whose validity implies the soundness of the code with re-
spect to the given specification. This includes both verification conditions to guarantee
the absence of run-time errors: null pointer dereferencing, out-of-bounds array access,
etc.; and verification of user-defined assertions. The verification conditions can be dis-
charged using one or several theorem provers.

The main originality of this platform is that a large part is common to C and JAVA. In
particular there is a unique, stand-alone, verification condition generator called WHY,
which is able to output verification conditions in the native syntax of many provers,
either automatic or interactive ones. The overall architecture is presented in Figure 1.

In the case study we consider in the following, we use JAVA, but most things applies
to C too (and potentially similar language like C++ or C# if they are supported in the
future).

2.2 The WHY Intermediate Language

A main specificity of our approach is to use WHY as an intermediate language. As a
programming language, it is a quite simple language with basic constructs like if and
while. Its imperative features are limited to providing mutable variables: there are no
complex, in-place modifiable, data types like arrays or structures. Indeed, the type of
such a mutable variable is necessarily some logical sort, that is a type defined in the
specification part of the language. This specification part is a standard first-order lan-
guage where one may introduce logical sorts, functions, predicates and axioms, very
much like in an algebraic specification language like OBJ. The type of a mutable

Annotated C program

Caduceus

JML-annotated Java program

KrakatoaWhy program

Why

Verification Conditions
Interactive provers
(Coq, PVS,
Isabelle, etc.)

Automatic provers
(Simplify, Yices,
haRVey, Ergo,
CVC-lite, CVC3, etc.)

Fig. 1. Platform Architecture

http://why.lri.fr/
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variable is then either a built-in type (booleans, mathematical integers and reals) or
an introduced abstract datatype.

This algebraic specification feature is indeed internally used to describe the se-
mantics of execution of JAVA or C programs, with an appropriate modeling of mem-
ory [9,10]. This modeling of the memory heap is defined by introducing abstract
data types together with operations and an appropriate first-order axiomatization. Our
heap memory models for C and Java both follow the principle of the Burstall-Bornat
‘component-as-array’ model [11]. Each Java object field (resp. C structure field) be-
comes a Why mutable variable containing a purely applicative map. This map is
equipped with an access function acc so that acc(f, p) denotes the field of the struc-
ture pointed-to by p; and an update function upd so that upd(f, p, v) denotes a new
map f ′ identical to f except at position p where it has value v. These two functions
satisfy the so-called theory of arrays:

acc(upd(f, p, v), p) = p

p �= p′ → acc(upd(f, p, v), p′) = acc(f, p′)

In Java, arrays of integers are also interpreted using a mutable variable intA, and an ac-
cess function array_acc such that t[i] is represented by array_acc(intA, t, i). Arrays
of booleans and objects are interpreted similarly using variables boolA and objA [12].
In C, pointer arithmetic is also modelled by such logical functions [10].

2.3 Basics of the Specification Language

A contract of a method has the general form

normal_behavior
requires P
assigns locs
ensures Q

P and Q are logical assertions, P is a pre-condition and Q is a post-condition, locs is a set
of memory locations, that may be modified by the method. In post-conditions, special
construct \old(e) denotes the value of expression e in the pre-state of the method, and
\result denotes the return value.

It is also possible to introduce class invariants: properties that must be established
by constructors, and preserved by each method of the class.

If a method is likely to stop abruptly with an exception, it is also possible to specify
this behavior by the variant:

behavior
requires P
assigns locs
ensures Q
signals (E) Q’

where E is the name of the exception.
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The assertions are written in first-order logic with a JAVA-like syntax. This means
that conjunction and disjunction are denoted as && and ||, and equality as ==. Other
constructs are added, e.g. ==> for implication and (\forall type x; P ) for universal
quantification.

Side-effect free JAVA expressions are also allowed in annotations, like array access
t[i] and field access o.f.

2.4 Algebraic Specifications

New abstract logical sorts s can be introduced by

logic type s

Logical function and predicate symbols are introduced by their profile, using a JAVA-
like syntax putting the type before the parameter name:

logic <result type> f(type1 x1, . . . , typen xn)
predicate P (type1 x1, . . . , typen xn)

A logical theory is presented by axioms of the form

axiom name : P

where P is any closed formula.

2.5 Model Fields

An advanced feature we are going to use is the notion of model field. In JML, these
are almost like other JAVA fields, except that they are visible only in specifications.
Their types must be a model class which are specific JAVA classes whose instances
must be persistent, that is cannot be modified in-place. In JML they are used mainly
for the runtime assertion checker: using JAVA objects for models is clearly suitable in
that case, since specifications are then executables. Making them side-effect free is of
course mandatory to avoid interference between specification are execution of JAVA

code. However, although these model fields provide a natural means of abstraction and
modular reasoning [13], their exact semantics is not well fixed [14]. The relations with
refinement like in B is not well understood either [15].

Using JAVA objects as models raises more issues in the context of static verification:
JAVA code of model classes and methods must be interpreted in some way into logical
specifications, which raises issues related in particular to undefinedness of values, de-
tection of absence of side-effects, etc. [16]. To avoid these issues, in KRAKATOA we
decided that model fields should not be JAVA objects but algebraic data types defined
in the specification language. This is an unique feature of our platform, which forms a
bridge between the JAVA side and the algebraic specification side.

In practice a model field is declared like any other field, with the modifier model.
Unlike other fields, model fields may also occur in JAVA interfaces.
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3 The Case Study: Priority Queues

We present now our case study step by step, following what should be a standard soft-
ware engineering process starting from the abstract interface and progressively obtain
an implementation. Our method is similar to the refinement process in B.

Our aim in this case study is to develop a library providing priority queues. These are
collections of data where to each datum is associated an integer called its priority. There
are two main operations we want to perform on such a queue: adding a new datum to
the collection, and extracting from the queue the datum with the highest priority. To
keep things simpler, since the data contents are meaningless, we consider here that
the data are reduced to their priority, so that priority queues are indeed collections of
integers.

3.1 Step 1: Abstract Queue Interface

The main first step is to describe an interface for the priority queue library. We proceed
in four sub-steps: first, a JAVA interface is introduced, giving just the profiles of methods
we need. Then, to provide a formal specification for these methods, we introduce a
signature (sorts, function and predicate symbols) for a logical datatype of bags to be
used as a model in our third sub-step where we add annotations to the JAVA source of
our interface. Finally, we provide an axiomatization of our logical datatype of bags, and
discuss several issues.

Abstract Queues as a JAVA Interface. Since we aim at producing JAVA code at the
end, it is natural to use the native interface mechanism of JAVA, so that we can first
describe our interface as in Figure 2.

The method profiles given exactly reflect the two main operations one needs for a
queue: insertion and extraction of the maximum. Additionally, it is of course useful to
have some way to create an empty queue. It would be natural to introduce a constructor,

interface AbstractQueue {

// returns a new empty queue
static AbstractQueue create();

// insert n into queue this
void insert(int n);

// extracts the maximal element of queue this
// throws an exception if queue is empty
int pop() throws EmptyQueueException;

}

Fig. 2. Queue interface
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but JAVA do not allow constructors in interfaces so for that technical reason we introduce
the static method create instead.

We also provide the information that the pop method may not proceed properly if
the queue is empty, by adding a throws clause.

Profiles and throws is the only specification information we can put at the level of
JAVA, so now we go further by adding annotations.

Algebraic Specification of Bags. We want to formally specify this interface using
the specification language of KRAKATOA, in particular its model feature introduced
in Section 2.5. Since the informal specification above is talking about a collection of
data, we first introduce such a datatype in the logic side. Notice that in our collections
we allow several occurences of the same integer: in practice in a priority queue, it is
possible to have several data with the same priority level. So the natural logical datatype
to consider is the type of multisets or bags. It is a quite standard algebraic datatype, the
signature we consider is given in Figure 3 (in KRAKATOA syntax).

// bag is a sort name for multisets of integers
//@ logic type bag;

// empty bag
//@ logic bag empty_bag();

// singleton {n}
//@ logic bag singleton(int n);

// union of b1 and b2
//@ logic bag union(bag b1,bag b2);

// shortcut: adding an element to a bag
//@ logic bag add_bag(bag b,int n) { union(b,singleton(n)) }

// nb of occurences of element n in bag b
//@ logic int occ(int n, bag b);

// m is a maximal element of b
/*@ predicate is_max_bag(bag b, int m) {

@ occ(m,b) >= 1 &&
@ (\forall int x ; occ(x,b) >= 1 ==> x <= m) }
@*/

// the maximum of bag b (any value if b empty)
//@ logic int bag_max(bag b);

Fig. 3. Signature for bag logical datatype
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This is only a signature for the considered algebraic datatype, and we need to pro-
vide an axiomatization of it. We will do it below, but it is not necessary to do it before
giving the formal specification of our abstract interface. Notice that in our specification
language we consider only total functions, so bag_max is defined even for the
empty_bag: we will have to be careful about this situation (similarly to the handling
of division by zero).

Formal Specification of Queue Interface. We can now specify our priority queue
interface. First, we add a model field to it, of sort bag.

//@ model bag elements;

Such a field will of course remain abstract, that is it will not be implemented. It is
however some mutable abstract data, that is eventually modified by methods of that
interface. As such, it serves as an abstract state of the future implemented class. It is
also very similar to a state variable in some abstract B machine.

The specification of the creation method is then as follows.

/*@ normal_behavior
@ assigns \nothing;
@ ensures \fresh(\result) &&
@ \result.elements == empty_bag();
@*/

static AbstractQueue create();

The post-condition (ensures clause) tells first that the result queue is freshly al-
located, and second it tells it has no elements yet, by saying that its abstract state is
an empty bag. The assigns clause additionally specifies that no change are made on
already allocated objects.

The insertion is then specified as follows, again in term of the model field.

/*@ normal_behavior
@ assigns elements;
@ ensures elements == add_bag(\old(elements),n);
@*/

void insert(int n);

First, the assigns clause says that the abstract state is changed (and nothing else),
and second the ensures clause gives a relation between its old and its new value: the
given element has been added.

Finally the extraction is specified as follows.

/*@ behavior
@ assigns elements;
@ ensures \result == bag_max(\old(elements)) &&
@ \old(elements) == add_bag(elements,\result);
@ signals (EmptyQueueException)
@ \old(elements) == elements &&
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@ elements == empty_bag();
@*/

int pop();

The ensures clause provides a post-condition when terminating normally: the
maximal element is returned, and this element is removed from the abstract model.
The signals clause provides a post-condition when terminating abruptly by the ex-
ception: the model is not changed, and even more precisely, it was empty.

This complete our first step of building a formally specified interface for queues. The
informal specification has been turned into a formal one in a quite straghtforward way,
thanks to the introduction of the multiset model field.

Axiomatization of Bags. At this step of giving an abstract specification of priority
queues, we do not need any concrete representation of bags, so we just propose a set
of first-order axioms to present some properties we expect from bags operations above.
The corresponding axiomatization, which forms an algebraic specification of bags, is
given Figure 4.

Remark that since we just pose axioms, the axiomatization is not guaranteed to be
consistent. To establish the consistency, one possibility offered by the platform is to
generate a template for interactive theorem provers, e.g. COQ. In that case, one can fill
the template manually by providing concrete definitions and then prove that axioms are
indeed valid formulas. In other words, this is a way to realize the axiomatization, that
is providing a model, and this implies consistency.

However, in that particular case this is far from trivial to make such a realization. A
quite elegant way to realize bags in COQ could be as functions from Z to N. However, in
that case the axiom of extensionality of bag equality would not be provable, and should
be admitted, as known to be consistent (http://pauillac.inria.fr/coq/
V8.1/faq.html#htoc37). Moreover, the bag_max function would be realizable
only on finite sets so more work would be required.

Another possible solution would be to introduce a concrete inductive datatype whose
constructors would the empty bag, the singleton and the union. But in that case equality
of bags should not be interpreted as COQ equality (because it would be inconsistent),
but as a new predicate for bags, whose definition would exactly be the extensionality
axiom. To make this usuable in COQ, it should indeed produce a new setoid, to allow
declaration of morphism and reasoning by equality replacement. In the current state of
the platform, this possibility is not implemented but it could possible in the future.

Another possibility not available in the platform but could also be in the future, is
to provide a template in some algebraic specification environment. In particular, in the
Maude system it is possible to introduce a function symbols with respect some built-in
theory such associativity, commutativity, identity. This would be very handy for union
of multisets. Other functions and predicates could be defined by rewrite rules. However,
again the extensionality axioms would not hold, so again the equality of bags should
declared as a new predicate.

Another solution could be to find a concrete representation of bags as an inductive
datatype with free constructors. This may possible, e.g. using Patricia trees [17], but
quite tricky.

http://pauillac.inria.fr/coq/V8.1/faq.html#htoc37
http://pauillac.inria.fr/coq/V8.1/faq.html#htoc37
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// union is associative, commutative, with identity empty_bag
/*@ axiom union_assoc: (\forall bag b1,b2,b3;

@ union(union(b1,b2),b3) == union(b1,union(b2,b3)));
@*/

/*@ axiom union_comm: (\forall bag b1,b2;
@ union(b1,b2) == union(b2,b1));
@*/

/*@ axiom union_empty_id_left: (\forall bag b;
@ union(empty_bag(),b) == b);
@*/

/*@ axiom union_empty_id_right: (\forall bag b;
@ union(b,empty_bag()) == b);
@*/

// occ non−negative
/*@ axiom occ_non_negative:

@ (\forall int n; (\forall bag b; occ(n,b) >=0 ));
@*/

// occ characterization over empty_bag, singleton and union
/*@ axiom occ_empty:

@ (\forall int n; occ(n,empty_bag()) == 0);
@*/

/*@ axiom occ_singleton_eq:
@ (\forall int n; occ(n,singleton(n)) == 1);
@*/

/*@ axiom occ_singleton_neq:
@ (\forall int n,m ; n != m ==> occ(n,singleton(m)) == 0);
@*/

/*@ axiom occ_union:
@ (\forall int n; (\forall bag b1,b2;
@ occ(n,union(b1,b2)) == occ(n,b1)+occ(n,b2))) ;
@*/

// extensionality of bag equality
/*@ axiom bag_ext: (\forall bag b1,b2;

@ (\forall int n; occ(n,b1) == occ(n,b2)) ==> b1 == b2);
@*/

// bag_max characterization
/*@ axiom bag_max_def: (\forall bag b; b != empty_bag() ==>

@ is_max_bag(b,bag_max(b)));
@*/

/*@ axiom bag_max_elim: (\forall bag b; (\forall int n;
@ is_max_bag(b,n) ==> n == bag_max(b)));
@*/

Fig. 4. Algebraic specification of bags
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To conclude this discussion, using algebraic specifications is a natural and useful
technique to provide abstract models and formal specification of programs, but even for
a simple and standard type like bags, there is still a poor support.

Notice finally that there is a quick test for inconsistency: try to derive false, us-
ing any automated theorem prover. This is of course incomplete. For the rest of this
paper, we just ignore these issues, and just assume the axiomatization given above is
consistent.

3.2 Step 2: Refinement into Logical Heaps

In this second step, we now take some decisions about the implementation we have in
mind. A classical representation of a priority queue is a heap, that is a binary tree having
the heap property: the value at any node is greater or equal to any values appearing in
the subtree below. In particular, the root necessarily contains the maximal element in
the tree.

We have here three substeps: first we consider an algebraic specification of binary
trees and heaps. Second, we discuss the notion of refinement in general, and the nec-
essary proof obligations involved. Third, we refine our interface for queue and proceed
with the verification of the refinement obligations.

Algebraic Specifications of Binary Trees and Heaps. The declarations for the new
logic type btree for binary trees are given in Figure 5. As for bags, we introduce
only the functions symbols we need to specify the refined interface. We need also to
relate the heap representation with the bag representation: the collection of elements
is the multiset of integers which occurs in the tree. We express this by the additional
logical function tree_contents. We now have the necessary logical constructions
to propose a refinement of our JAVA interface.

// btree is a sort name for binary trees, with integer values on nodes
//@ logic type btree;

// the empty tree
//@ logic btree empty_tree();

// the value at the root, unspecified if t empty
//@ logic int tree_root(btree t);

// predicate specifying t has the heap property
//@ predicate is_heap(btree t);

// returns the contents of t, as a multiset
//@ logic bag tree_contents(btree t);

Fig. 5. First-order signature for binary trees
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interface AbstractHeap extends AbstractQueue {

//@ model btree tree;
/*@ invariant is_heap(tree) &&

@ tree_contents(tree) == elements;
@*/

}

It starts by providing a new model field of type binary tree, and an invariant which
specifies both that the tree model is a heap, and the relation with the more abstract bag
model: the bag model is always the contents of the tree.

Notice that we do not specify anything about the shape of the binary tree. For ef-
ficiency reason, it should be balanced, but this is not required for correction. In par-
ticular, this means that the heap model field is not unique: the specification is not
deterministic.

The refined specification for the create method is the following, specifying that
the tree model of the result is the empty tree.

/*@ normal_behavior
@ assigns \nothing;
@ ensures \fresh(\result) &&
@ \result.tree == empty_tree();
@*/

AbstractQueue create();

The refined specification for the insert method is the following.

/*@ normal_behavior
@ assigns tree;
@ ensures is_heap(tree) &&
@ tree_contents(tree) ==
@ add_bag(tree_contents(\old(tree)),n);
@*/

void insert(int n);

It specifies only that the tree model is modified, its new value is still a heap, and
that the contents of the tree satisfies the same property as the bag model itself. This
may sounds strange that we repeat two properties: we say that the result is a heap,
whereas we already said it was an invariant, and we say that the contents of the tree
satisfies the same property as the bag model, whereas we said in the invariant that the
bag model is the contents of the tree model. The crucial point here is the semantics
of the refinement: what we specify is a refined interface, and we will have to prove
that the invariant is preserved, we do not assumed it. This is detailed in next section
below.

Finally, the refined specification of method pop is as follows.
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/*@ behavior
@ assigns tree;
@ ensures \result == tree_root(\old(tree)) &&
@ is_heap(tree) &&
@ \old(tree) != empty_tree() &&
@ tree_contents(\old(tree)) ==
@ add_bag(tree_contents(tree),\result);
@ signals (EmptyQueueException)
@ \old(tree) == tree && tree == empty_tree();
@*/

int pop() throws EmptyQueueException;

Again, we repeat that the result tree model is a heap, and that the contents satisfies the
same property as the bag model. But we indeed add a bit of information: the returned
value is the root of the tree model. This will require a non-trivial proof of refinement.

Verification Conditions for Refinement in General. At this step, we want to check
that any implementation of interface AbstractHeapwill be also a correct implemen-
tation of AbstractQueue.

Generally speaking, let us assume we specify an abstract interface with

– a model field a

– a method m with an argument x and
– a precondition Preabs(x, a) ;
– a postcondition Postabs(x, a, a′, r), where a′ denotes the new value of a, and r the

returned value.

Let us assume we refine this interface with

– a model field b;
– an invariant I(a, b) relating abstract and refined model fields;
– a refined precondition for m Preref (x, b)
– a refined postcondition Postref (x, b, b′, r)

The situation is illustrated by the follwing diagram of

abstract level a, x a′, r
m

refined level b, x b′, r
m

I(a, b) I(a′, b′)

Validity of the refinement means that whenever a refined step occurs (lower plain arrow)
from a state which has abstract model a (left plain double arrow), there exists an abstract
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transition (upper dotted arrow) for which representation invariant is preserved (right
dotted double arrow). This corresponds to the formula

∀a, b, x, I(a, b) ∧ Preabs(x, a) →
Preref (x, b)∧
∀b′, r, Postref (x, b, b′, r) →
∃a′, I(a′, b′) ∧ Postabs(x, a, a′, r)

COQ Specifications of Trees, and Proof of Refinement. To prove the verification
conditions for refinement, we need to provide a theory for the signature of binary trees
given above. Because of the recursive nature of binary trees, it is not handy to give just
a first-order axiomatization as we did for bags. In the WHY/KRAKATOA/CADUCEUS

platform, a way to achieve this is to provide an incomplete axiomatization, and de-
lay some parts to a back-end prover that supports inductive definitions. For this case
study, we decide to use COQ. The logical definitions of binary trees and the heap prop-
erty are then given in COQ syntax in Figure 6. Notice that on the COQ side, the JAVA

type int for 32-bit integers is simply modelled by mathematical integers in Z: the

(* inductive definition of binary trees of integers *)
Inductive btree : Set :=
| Empty_tree : btree
| Node : ∀ (left:btree) (root:Z) (right: btree), btree.

(* extract the value at root.
If tree empty, just return a arbitrary value *)

Definition tree_root (b:btree) : Z :=
match b with
| Empty_tree ⇒ 0
| Node _ r _ ⇒ r

end.

(* recursive definition of the heap property *)
Fixpoint is_heap(t : btree) : Prop :=

match t with
| Empty_tree ⇒ True
| Node Empty_tree _ Empty_tree ⇒ True
| Node (Node _ n1 _ as l) n Empty_tree ⇒

n ≥ n1 ∧ is_heap l
| Node Empty_tree n (Node _ n2 _ as r) ⇒

n ≥ n2 ∧ is_heap r
| Node (Node _ n1 _ as l) n (Node _ n2 _ as r) ⇒

n ≥ n1 ∧ is_heap l ∧ n ≥ n2 ∧ is_heap r
end.

Fig. 6. COQ realization of binary trees signature
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(* recursive definition of the multiset of elements in a tree *)
Fixpoint tree_contents(t : btree) : bag :=

match t with
| Empty_tree ⇒ empty_bag
| Node l n r ⇒

add_bag (union (tree_contents l) (tree_contents r)) n
end.

Fig. 7. COQ realization of tree_contents

absence of overflow is controlled at the WHY level by generating appropriate proof
obligations.

We also we to give a definition of tree_contents. For that purpose we rely on an
existing definition of bags which is indeed the COQ definition automatically generated
by WHY from the axiomatization of bags given in Figure 4. This is given on figure 7.

Generally speaking, this technique of delaying definitions to the back-end prover
means that the semantics of the specifications is not anymore the set of all first-order
models of the given algebraic specifications (the so-called loose semantics), but only
the subset of those which satisfy the additional inductive definitions, in particular only
the models generated by constructors of inductive data types are considered (the initial
semantics).

We can now proceed with verifying the proof obligations for refinement. As we no-
ticed, the refined specifications for create and insert are just made but repeat-
ing the properties with expect, from the invariant and the specifications of abstract
queue methods we need to satisfy, and consequently proving refinement conditions for
create and insert is straightforward. For pop it is not: we have to prove that the
root value of the tree is indeed the maximal element of the multiset of its value. This
can be proved in COQ using a few auxiliary lemmas given in Figure 8.

To obtain a decent level of automation, we indeed use a new feature available in COQ

version 8.1, which is the ability to call automatic provers within the process of proving
a goal in COQ, under the form of a tactic that tries to proof the current sub-goal using
the first-order hypothesis of the context. For the lemmas of Figure 8, we indeed used
the tactics simplify or ergo that call the external automated provers Simplify and
ERGO respectively. This greatly helps the proofs in particular on subgoals related to
bags, that needs to be proved by applying the axioms of the first-order axiomatization
of bags. But caution is required: when calling these tactics, the answer of the back-end
prover is trusted by COQ. To recover the standard skeptical approach of COQ, the prover
should not only answer yes, but also provide a proof trace that could be double-checked.
This is one of the ongoing work around the ERGO prover.

A general remaining issue is how to combine automatic provers and interactive ones.
One point we consider for the future is to allow inductive definitions directly at the
source level, with incomplete first-order encodings (that is only the “theory of con-
structors”) when automated provers are in use.

General speaking, we should provide librairies of general purpose logical data struc-
tures, such as binary trees or bags.
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Lemma is_heap_left: ∀ (t1 t2:btree) (r:Z),
is_heap (Node t1 r t2) → is_heap t1.

Lemma is_heap_right: ∀ (t1 t2:btree) (r:Z),
is_heap (Node t1 r t2) → is_heap t2.

Fixpoint forall_tree (P:Z→Prop) (b:btree)
{ struct b } : Prop :=

match b with
| Empty_tree ⇒ True
| Node t1 r t2 ⇒

P r ∧ forall_tree P t1 ∧ forall_tree P t2
end.

Definition ge_tree (x:Z) (b:btree) :=
forall_tree (fun y ⇒ x ≥ y) b.

Lemma ge_tree_heap: ∀ (t t1 t2:btree) (r x:Z),
t = Node t1 r t2 → is_heap t → x ≥ r → ge_tree x t.

Lemma forall_tree_contents :
∀ (P:Z → Prop) (t:btree) (x:Z),

forall_tree P t → occ x (tree_contents t) ≥ 1 → P x.

Lemma pop_refinement_po:
∀ a:bag, ∀ b:btree,
is_heap b ∧ a = tree_contents b →

∀ b’:btree, ∀ r:Z,
r = tree_root b ∧ is_heap b’ ∧ b �= empty_tree ∧

tree_contents b = add_bag (tree_contents b’) r →

∃ a’:bag,
is_heap b’ ∧ a’ = tree_contents b’ ∧ r = bag_max a ∧

a = add_bag a’ r.

Fig. 8. COQ proof of refinement obligations for pop

3.3 Step 3: Providing a JAVA implementation

The third step of our case study is now to provide a JAVA implementation of the
refined interface for queues. Following classical data structure and algorithms for
queues [18], we propose an efficient implementation based on storing a binary tree
into an array, where the root is stored at index 0 and the two children of the node
at index i are stored at index 2i+1 and 2i+ 2. This is indeed a compact represen-
tation of complete trees: every level is full except the last level which is filled from
the left.

The key step is then to formally specify this representation, relating the JAVA

encoding and the logical type of heaps. The class implementation, without methods
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/* returns the binary tree stored in t
* between indexes root and [bound−1] included
*/
/*@ logic btree tree_of_array(int t[],int root, int bound)

@ reads t[*];
@*/

class Queue implements AbstractHeap {

int size;
int t[];

/*@ private invariant
@ t != null && 0 <= size && size <= t.length ;
@*/

//@ invariant tree == tree_of_array(t,0,size);
}

Fig. 9. class implementing queues and its invariants (without the methods)

yet, is given on Figure 9. The tree_of_array function is a hybrid logical
function, which mixes both JAVA data types and logical types. It is declared as
any other logical function, its intended meaning is to return the binary tree stored
in the array t between the indexes root (included) and bound (excluded). As for
other binary tree functions, we decide to delay its definition to the back-end prover
side.

The essential issue here is how such a hybrid predicate can relate the JAVA side
and the logical side. This is here that we use that fact that in our platform, JAVA exe-
cution itself is modelled into the logical language which serve as user models, as de-
scribed in Section 2.2. Such an hybrid predicate, translated into the intermediate logi-
cal setting of WHY, takes extra arguments corresponding to variables representing the
JAVA memory. Indeed, this is the purpose of the reads clause in the declaration of
tree_of_array above: by putting t[*] in this clause, we declare that the later
definition of tree_of_array will access the JAVA memory part corresponding to
t[0], t[1], . . . , t[t.length-1]. On the logical side, this memory will appear as
the extra variable named intA (see Section 2.2) of type int memarray (standing
for “a memory region for arrays of integers”) and the JAVA array access t[i] is repre-
sented in the logical side as array_acc(intA,t,i). This “glue” between the JAVA

side and the logical side is of course the tricky part of the development process, that the
user has to learn, but we argue that this JAVA memory model is quite concise so that it
should not be a blocking step.

We continue to use COQ as the back-end prover, and tree_of_array can be
defined as a general recursive function [19] as shown in Figure 10 (for readability, we
simplified the real COQ syntax).
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Function tree_of_array (intA:memarray Z) (t:value)
(root:Z) (bound:Z) :=
if (0 ≤ root < bound) then

Node (tree_of_array intA t (2*root+1) bound)
(array_acc intA t root)
(tree_of_array intA t (2*root+2) bound)

else Empty_tree.

Fig. 10. COQ definition of tree_of_array hybrid function

We now give implementations of the methods needed for the class Queue to be
an implementation of AbstractQueue. For implementing create, we additionally
provide a JAVA constructor, which has to build a new Queue satisfying the invariants.
Code is given in Figure 11. KRAKATOA/WHY generates 9 verification conditions for
the constructor and 8 for the create function. Most of them comes from the safety of
JAVA executions: no null pointer dereferencing, no array access out-of-bounds, validity
of sub-typing, validity of assigns clauses. There is of course also the proof that the
implementation of create satisfies the post-condition given in the AbstractHeap
interface: but since the original value of size is 0, it is straightforward to show that
the tree model is initially empty. Indeed, all the 17 proof obligations are automatically
discharged by SIMPLIFY and ERGO.

For the insert method, we follow the classical algorithm, which tries to add the
new element in the first free cell. Since this insertion may destroy the heap property, we
need to move this new element up, until we reach a greater parent. This is illustrated in
Figure 12.

Prior to this, we need to be sure that there is enough space in the array, otherwise
enlarge it. For that purpose an auxiliary static method copy is called to copy a portion
of an array to another one. This results in the code given in Figure 13. Notice that we

/*@ normal_behavior
@ assigns \nothing;
@ ensures size == 0 && t != null;
@*/

Queue() {
size = 0;
t = new int[7];

}

static Queue create() {
return new Queue();

}

Fig. 11. JAVA code of create method
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Fig. 12. Insert new element 19 in a heap

use for the first if statement a local annotation, to give a specification to this particu-
lar statement. It states that after the statement the array t may have been modified, it
still contains the elements of the heap, and is necessarily large enough to store a new
element. This local annotation acts like a lemma for the weakest precondition calculus,
avoiding to go into branches of the if, which would duplicate assertions.

For this method, 83 verification conditions are generated. 74 of them, related
to JAVA execution safety are automatically discharged by automatic provers. The
remaining obligations are the ones related to the functional behavior, e.g. show-
ing that the result tree model is still a heap. For those, it is mandatory to use
COQ again, since their validity must be proved using induction on trees. This part
requires quite a significant work, involving the proof of several auxiliary lemmas
related on the tree_of_array hybrid function. For example, to prove that af-
ter the enlargement of the array, the new array still contains the tree of the old
array, it must be proved that for any two memory states intA1 and intA2 for
int arrays, and for any t1, t2, i, j, the trees (tree_of_array intA1 t1 i j) and
(tree_of_array intA2 t2 i j) are equal whenever (array_acc intA1 t1 k)=
(array_acc intA2 t2 k) for each k such that i ≤ k < j. This is clearly a part
of the development which requires a significant expertise both in COQ and in the
JAVA memory model.

Finally, for the method pop(), we just need to return the root of the tree, and the
last element of the array must be reinserted in the tree. The corresponding modification
of the tree is illustrated in Figure 14, and the code of that method is given in Figure 15.

For pop, 142 verification conditions are generated by KRAKATOA/WHY, and 106
of them are discharged automatically.

Discussion and Open Issues. The verification conditions generated for JAVA imple-
mentations of methods above, regarding the functional behaviors, are similar to re-
finement obligations of Section 3.2. The difference is that the refined level is now
not a transition of some abstract machine but a true JAVA method body. But in such
a setting, involving in particular mutable data structures, there is no theoretical study
showing that the proof obligations proposed are sound, i.e. that they guarantee that the
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/*@ normal_behavior
@ assigns size,t,t[*];
@*/

public void insert(int n) {
// enlarge array t if needed
// the following is a local specification on the if statement
/*@ assigns t;

ensures
(\forall int j; 0 <= j && j < size; t[j]==\old(t[j]))
&& t != null && size < t.length && t instanceof int[];

*/
if (size == t.length) {

int oldt[] = t;
t = new int[2*size+1];
copy(oldt,t,0,size−1,0);

}
int i = size;
/*@ loop_invariant
@ 0 <= i && i <= size &&
@ (i == size ==>
@ is_heap(tree_of_array(t,0,size)) &&
@ tree_contents(tree_of_array(t,0,size)) = elements) &&
@ (i < size ==>
@ is_heap(tree_of_array(t,0,size+1)) &&
@ tree_contents(tree_of_array(t,0,size+1)) =
@ add_bag(elements,t[i]));
@ decreases i;
@*/

while (i > 0) {
int parent = (i−1)/2;
int x = t[parent];
if (x >= n) break;
t[i] = x;
i = parent;

}
t[i] = n;
size++;

}

Fig. 13. JAVA code of insert method

implementation respects the interface. This opens challenging issues regarding object
creation and initialisation, regarding whether class invariants could temporarily violated
inside methods bodies [16]. We discuss more about these issues in the next subsection.

3.4 Using Abstract Queues as a Library

One important aspect we aim at by proposing our modular algebraic specification ap-
proach is to allow the use of certified libraries.
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Fig. 14. Removing root 23, and reinserting last element 12 in a heap

Let us consider a toy example of use of our interface for queues as follows.

/*@ normal_behavior
@ requires q != null && q.elements == empty_bag();
@ ensures \result == 5;
@*/

public static int test(AbstractQueue q) {
q.insert(1);
q.insert(3);
q.insert(5);
q.insert(4);
return q.pop();

}

When proving the obligation that the result is 5, we do not see any implementation
details of queues, we only see the abstract specification for queues, hence essentially it
amounts to prove that 5 is the maximal element of the bag {1, 3, 5, 4}.

This is a very important and useful aspect of our modular development of the queue
library: only the abstract interface is visible to the user. It is useful to hide implementa-
tion details, and it still allows us to reason on queues, by just reasoning on the multiset
model of them.

The problem is that no meta-theory exist showing that such a modular approach is
safe in the setting of JAVA where object states are mutable. In presence of mutable data
structures, ensuring that a class invariant is preserved may be extremely tricky, lead-
ing to the ongoing research on ownership systems[20]. Ensuring that the internal data
structure, like the internal array in our example, remains consistent during execution,
requires to checks whether no outside object may modify internal data directly, without
using provided methods. JAVA visibility scopes are clearly insufficient for that purpose:
for example, if a method just returns one of the field, such as array t in our example,
then direct modification of this field is possible. This is again related to ownership, but
also to property of separation: one may want to prove that the heap memory involved
in the internal representation of an object is always separated form other parts of heap
memory. This is the purpose of all the current work around separation logic [21], and
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/*@ behavior
@ assigns size,t[*];
@*/

public int pop() throws EmptyQueueException {
if (size == 0) throw new EmptyQueueException();
int max = t[0];
size−−;
int last = t[size]; // last element, to reinsert in the heap
int i = 0;
/*@ loop_invariant
@ is_heap(tree_of_array(t,0,size)) &&
@ (i == 0 ==> elements ==
@ add_bag(tree_contents(tree_of_array(t,0,size)),last))
@ &&
@ (i > 0 ==> add_bag(elements,t[i]) ==
@ add_bag(add_bag(tree_contents(tree_of_array(t,0,size)),
@ max),last));
@ decreases size−i;
@*/

while (i < size) {
int left = 2*i+1; // the left child
int right = 2*i+2; // the right child
if (left >= size) /* there is no child */ break;
int larger = left; // will refer to the larger child
if (right < size && t[left] < t[right]) larger = right;
if (last >= t[larger]) break;
// move larger child in place of its parent
t[i] = t[larger];
// continue with the larger child
i = larger;

}
t[i] = last;
return max;

}

Fig. 15. JAVA code of pop method

static analysis of regions [22]. We propose a preliminary work [23] on the use of region
analysis in the context of deductive verification based on weakest precondition calculus
as in our platform, but there is clearly important challenges that remains open.

4 Conclusions and Perspectives

We presented an example of a development of a certified general-purpose library com-
ponent for an imperative programming language (JAVA), with a high-level modeling of
its behavior using algebraic specifications, which can be seen as the public view of this
component.



Towards Modular Algebraic Specifications for Pointer Programs: A Case Study 257

Among the large amount of work on this subject, our originality relies on the in-
terpretation of the source code into the intermediate specification and programming
language WHY, in which we both specify the semantics of JAVA or C execution, and
the user-specified models. This allows us to model a JAVA program not by model classes
like in JML, but by algebraic data types from an algebraic specification. The wide range
of back-end provers allows the user to use either a standard first-order axiomatization
which is understood by all provers, or more advanced logical features of a specific
back-end prover, such as inductive data types and recursive functions. Accordingly,
proof obligations can be discharged by standard first-order reasoning but also using in-
duction. We hope these key features will allow to go beyond in the future, especially
for the construction of certified libraries, which in turn will allow reutilization.

Development of certified librairies has been considered a main direction of research
by the working group on the “grand challenge 6” (http://www.fmnet.info/
gc6/, http://vstte.ethz.ch/content.html) on dependable software. In-
deed, reutilization is key: this is a main feature to achieve to improve the impact of
heavy formal methods in software development.

The future works include first the integration of refinement into the intermediate
language WHY, which in particular requires extending the language by adding a notion
of encapsulated components. Similarly, we want to support a system of interfaces and
model fields in the C front-end of our platform, but C language lacks constructs for
components. In the future, we also plan to add a C++ front-end, which will combining
issues from JAVA and C.

In we have seen in Section 3.4, the main theoretical challenge is to support invariants
and refinement in a setting allowing mutable data structures. This issue is connected to
currently active research topics, regarding separation, ownership systems, region-based
memory analysis.

Acknowledgments. The current work on refinement techniques for JAVA programs
is joint with Jean-Christophe Filliâtre, Christine Paulin, Nicolas Rousset, and Wendi
Urribarí.
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Abstract. In this paper we present the part of the Coccinelle library
which deals with list permutations. Indeed permutations naturally arise
when formally modeling rewriting in Coq, for instance RPO with multi-
set status and equality modulo AC. Moreover the needed permutations
are up to an equivalence relation, and may be used to inductively define
the same relation (equivalence modulo RPO). This is why we introduce
the notion of permutation w. r. t. an arbitrary relation. The advantages
of our approach are a very simple inductive definition (with only 2 con-
structors), the adequacy with the mathematical definition, the ability to
define a relation using recursively permutations up to this very relation,
and a fine grained modularity (if R enjoys a property, so does permut R).

1 Introduction

In the domain of term rewriting [7], permutations naturally arise with equality
modulo AC and RPO with multiset status.

It is considered as well-known folklore [8,3] that when a function symbol + is
associative and commutative:

(x + y) + z = x + (y + z) (A)
x + y = y + x (C)

two terms flatten w. r. t. + are equal modulo if and only their direct subterms
are AC-equal up to a permutation:

a1 + a2 + . . . an=AC b1 + . . . bm

iff n = m and there exists a permutation π over {1, . . . , n} such that ∀i,
ai=AC bπ(i).

Concerning RPO [6], permutations are only needed when some symbols have
a multiset status. Usually RPO is primarily defined by inference rules for ≤RPO,
and ≡RPO and <RPO are then derived (≡RPO=≤RPO ∩ ≥RPO and <RPO=
≤RPO \ ≥RPO.

In our formal modeling, we have chosen to define first ≡RPO by a Coq In-
ductive, and then <RPO by another Inductive using ≡RPO.

This second definition in particular contains the following case:
f(s1, s2, . . . , sp)<RPOf(t1, t2, . . . , tq) if f has a multiset status and there exists
n ≤ p, q, a permutation π over {i1, . . . , in} such that:

H. Comon-Lundh et al. (Eds.): Jouannaud Festschrift, LNCS 4600, pp. 259–269, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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1. sij ≡RPO tπ(ij),
2. {t1, . . . , tq} \ {tπ(i1), . . . , tπ(in)} �= ∅,
3. ∀i, i /∈ {i1, . . . , in} =⇒ ∃tj ∈ {t1, . . . , tq} \ {tπ(i1), . . . , tπ(in)}, si<RPOtj.

With this definition, the RPO is able to compare more terms than an ordering
where the equivalence is defined to be the syntactic equality, as done in the works
of Adam Koprowski [11] or of Coupet-Grimal and Delobel [5].

For example, assuming that a, b, c and d are constants, f and g are binary
function symbols, f with lexicographic status and g with multiset status, and the
precedence is c < d, our version yields f(g(a, b), c) <RPO f(g(b, a), d), whereas
the weakest version cannot compare these terms since g(a, b) and g(b, a) are
equivalent, but not syntactically equal.

1.1 The Coccinelle Library

Coccinelle [4] is a public Coq [12] library which is intended to be a modeling
of rewriting as well as a (partial) mirror of the CiME tool. To start with, Coc-
cinelle contains a modeling of the mathematical notions needed for rewriting,
such as term algebras, generic rewriting, generic and AC equational theories and
RPO with status. It contains also properties of these structures, for example that
RPO is well-founded whenever the underlying precedence is so. This is enough
for “interpreting traces”, for instance traces of equality modulo or termination
traces.

Due to the mirror purpose, some of the types of Coccinelle (terms, etc.)
are translated from CiME (in Ocaml) to Coq, as well as some functions (AC
matching). Translating functions and proving their full correctness obviously
provides a certification of the underlying algorithm. Moreover, some proofs may
require that all objects satisfying a certain property have been built: for instance
in order to prove local confluence of a TRS, one need to get all critical pairs,
hence a unification algorithm which is complete1. This kind of completeness
proof has no counterpart in CiME.

If we want to model equality modulo AC and RPO in Coccinelle, we first
need permutations. Due to the term definition in Coccinelle, these are not
mathematical permutations of Sn, that is one-to-one functions over the finite
set {1, . . . , n}, but a binary predicate permut over lists, such that

permut(l1, l2)⇐⇒
{
length(l1) = length(l2)∧
∃π ∈ Slength(l1) ∧ ∀i ≤ length(l1), l1[i] = l2[π(i)]

2 First Attempt and Related Works

2.1 A First Solution Based on Counting Elements

A first very naïve solution is based on counting the number of occurrences for
each element present in both lists. The lists are permutations of each other
1 Local confluence is not part of Coccinelle yet.
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whenever every element occurs the same number of times in both of them. In
order to define this notion of permutation, one has first to define the counting
function. This is done by list_to_multiset, since in Coq, a multiset is simply
a function from a given set to the natural numbers. The tricky point is that in
order to properly count the number of occurrences of a given element, one has
to know whether two elements are identical or not; this means that the equality
over the elements of the lists has to be decidable. This property appears in the
definition below as eq_elt_dec.

Fixpoint list_to_multiset ( l : list elt ) {struct l} : multiset elt :=
match l with
| nil => EmptyBag elt
| h :: tl => munion (SingletonBag _ eq_elt_dec h) (list_to_multiset tl)

end.

Definition list_permut (l1 l2 : list elt ) : Prop :=
meq (list_to_multiset l1) (list_to_multiset l2 ).

This definition has two main drawbacks. First, as said above, it requires that
the equality is decidable. Second, the equality is the Leibniz equality, and not
an arbitrary equivalence relation. This leads to a quite ugly definition of RPO.
For example the inductive definition of equivalence modulo RPO of two terms
has the following form:

Inductive equiv : term −> term −> Prop :=
| Eq : ∀ t , equiv t t
| Eq_lex : ∀ f l1 l2 , status f = Lex −> equiv_list_lex l1 l2 −>

equiv (Term f l1) (Term f l2)
| Eq_mul : ∀ f ll l1 l2 , status f = Mul −>

(∀ t1 t2, In (t1,t2) ll −> equiv t1 t2) −>
permut l1 (map fst) ll ) −> permut l2 (map snd ll) −>
equiv (Term f l1) (Term f l2)

with equiv_list_lex : list term −> list term −> Prop :=
| Eq_list_nil : equiv_list_lex nil nil
| Eq_list_cons : ∀ t1 t2 l1 l2 , equiv t1 t2 −> equiv_list_lex l1 l2 −>

equiv_list_lex (t1 :: l1) (t2 :: l2 ).

When the common top symbol of two terms has a multiset status, one has to
introduce a list of pairs of equivalent subterms ll, and then use the notion of
permutation over the first (resp. the second) projection of the list. This interme-
diate list ll can be avoided in the lex case, but not in the multiset case, since
the definition of permutation does not support another relation than equality.

This leads to investigate other solutions.
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2.2 A Second Solution also Based on Counting Elements

The second solution (inspired by ours) is in the Coq standard library (Sort-
ing/Permutation.v). This is the one which is used in CoLoR [1] a Coq library
for rewriting mainly focused on termination.

The only difference with the first definition is that the equality is replaced by
an arbitrary relation.

Variable A : Set.
Variable eqA : relation A.
Hypothesis eqA_dec : ∀ x y, {eqA x y} + { eqA x y}.
Let emptyBag := EmptyBag A.
Let singletonBag := SingletonBag _ eqA_dec.

Fixpoint list_contents ( l : list A) : multiset A :=
match l with

| nil => emptyBag
| a :: l => munion (singletonBag a) (list_contents l)

end.

Definition permutation (l m: list A) :=
meq (list_contents l) (list_contents m).

But this definition still requires a decidable relation. This forbids to use it for
a nicer definition of RPO: one cannot provide a proof of decidability of a relation
before having defined this very relation. Moreover, if the relation eqA is not an
equivalence relation, this definition of permutation may not be the wanted one:
indeed by construction permutation is an equivalence and permutation(a1 ::
nil)(a2 :: nil) is by definition equivalent to ∀a, eqA a1 a ⇐⇒ eqA a2 a, which
is not the same as eqA a1 a2.

2.3 A Third Solution Based on Moving Elements

Another kind of definition is provided by the Coq standard library in List/List.v.
It is no longer based on counting elements, but on moving them. This allows
to get rid of the decidability of the underlying relation. However in the Coq
standard library, this relation is still the Leibniz equality.

Inductive Permutation : list A −> list A −> Prop :=
| perm_nil: Permutation nil nil
| perm_skip: ∀ (x:A) (l l ’: list A), Permutation l l ’ −>

Permutation (x :: l ) (x :: l ’)
| perm_swap: ∀ (x y:A) (l: list A), Permutation (y :: x :: l ) (x :: y :: l )
| perm_trans:
∀ ( l l ’ l ’’: list A), Permutation l l ’ −> Permutation l’ l’’ −>

Permutation l l ’’.
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3 A Fourth (and Hopefully Last) Solution

In this work, we propose a definition in the same spirit of the one which consists
in moving the elements. It is parameterized by an arbitrary relation R, for which
absolutely no property is required.

Inductive permut (A : Set) (R : relation A) : ( list A −> list A −> Prop) :=
| Pnil : permut R nil nil
| Pcons : ∀ a b l l1 l2 , R a b −> permut R l (l1 ++ l2) −>

permut R (a :: l ) (l1 ++ b :: l2 ).

This definition allows a nice definition of RPO. Indeed, now it is possible to
use inside a recursive call for defining a relation, permutation up to the same
relation.

Inductive equiv : term −> term −> Prop :=
| Eq : ∀ t , equiv t t
| Eq_lex : ∀ f l1 l2 , status f = Lex −> equiv_list_lex l1 l2 −>

equiv (Term f l1) (Term f l2)
| Eq_mul : ∀ f l1 l2 , status f = Mul −> permut equiv l1 l2 −>

equiv (Term f l1) (Term f l2)

with equiv_list_lex : list term −> list term −> Prop :=
| Eq_list_nil : equiv_list_lex nil nil
| Eq_list_cons : ∀ t1 t2 l1 l2 , equiv t1 t2 −> equiv_list_lex l1 l2 −>

equiv_list_lex (t1 :: l1) (t2 :: l2 ).

Inductive rpo : term −> term −> Prop :=
| Subterm : ∀ f l t s , In s l −> rpo_eq t s −> rpo t (Term f l)
| Top_gt :

∀ f g l l ’, prec g f −> (∀ s’, In s ’ l ’ −> rpo s’ (Term f l)) −>
rpo (Term g l’) (Term f l)

| Top_eq_lex :
∀ f l l ’, status f = Lex −> rpo_lex l’ l −>
(∀ s ’, In s ’ l ’ −> rpo s’ (Term f l)) −> rpo (Term f l’) (Term f l)

| Top_eq_mul :
∀ f l l ’, status f = Mul −> rpo_mul l’ l −> rpo (Term f l’) (Term f l)

with rpo_eq : term −> term −> Prop :=
| Equiv : ∀ t t ’, equiv t t ’ −> rpo_eq t t’
| Lt : ∀ s t , rpo s t −> rpo_eq s t

with rpo_lex : list term −> list term −> Prop :=
| List_gt : ∀ s t l l ’, rpo s t −> length l = length l’ −> rpo_lex (s :: l) (t :: l ’)
| List_eq : ∀ s s ’ l l ’, equiv s s ’ −> rpo_lex l l’ −> rpo_lex (s :: l) (s ’ :: l ’)

with rpo_mul : list term −> list term −> Prop :=
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| List_mul : ∀ a lg ls lc l l ’,
permut equiv l’ ( ls ++ lc) −> permut equiv l (a :: lg ++ lc) −>
(∀ b, In b ls −> ∃a’, In a’ (a :: lg) /\ rpo b a’) −>
rpo_mul l’ l .

3.1 Adequacy with the Mathematical Definition

The last definition of permut exactly corresponds to mathematical permutation
up to the underlying definition R, as formally proved in Lemma adequacy, where
a mathematical permutation is defined as usual, except that it is extended by
the identity function outside of its range, in order to avoid partial functions in
Coq.

Definition math_permut (n : nat) (f : nat −> nat) :=
(∀ i , n <= i −> f i = i) /\
(∀ i , i < n −> f i < n) /\
(∀ i j , i < n −> j < n −> f i = f j −> i = j).

Lemma adequacy :
∀ (A : Set) (R : relation A) (l1 l2 : list A),
permut R l1 l2 <−>
(length l1 = length l2 /\
∃ pi , (math_permut (length l1) pi) /\

∀ i , i < length l1 −>
match (nth_error l1 i), (nth_error l2 (pi i )) with
| (Some ai), (Some b_pi_i) => R ai b_pi_i
| _, _ => False
end).

where nth_error l i returns Some ai whenever ai is the ith element in l and
None when the list is not long enough. The proof of the above lemma is by
induction on the length of the lists and amounts to express the relation between
the function pi permutating the indexes of the list l2 and the corresponding
function pi′ for l2′ + +l2′′ where

l1 = a1 :: l1 ’ /\ l2 = l2’ ++ a2 :: l2 ’’ /\ R a1 a2 /\ permut R l1 l2 /\
permut R l1’ (l2 ’ ++ l2’’)

The relations between pi and pi′ are the following:

pi = (fun (i : nat) =>
match i with
| 0 => length l2’
| S i =>

if le_lt_dec (length l2 ’) (pi ’ i )
then S (pi ’ i )
else pi ’ i

end)
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pi ’ = (fun i =>
if le_lt_dec (length l1) i
then i
else

if le_lt_dec (pi (S i )) (pi 0)
then pi (S i )
else (pi (S i )) −1)

where le_lt_dec is a constructive test for ≤.

3.2 Additional Properties

Our definition of lists permutation enjoys some quite natural properties:

Lemma permut_nil :
∀ (A : Set) (R : relation A) l , permut R l nil −> l = nil.

Lemma list_permut_length_1:
∀A : Set) (R : relation A) a b, permut R (a :: nil ) (b :: nil ) <−> R a b.

Lemma permut_impl :
∀ (A : Set) (R R’ : relation A) l1 l2 ,
(∀ a b, R a b −> R’ a b) −> permut R l1 l2 −> permut R’ l1 l2.

By definition of the inductive, when two lists are permutations of each other,
one can add the first element of a pair related by R at the head of the first list and
insert the second element anywhere in the second list, and get two lists which
are still permutations of each other. The following lemma shows that one can
insert the first element anywhere in the first list, and still get the same result:

Lemma permut_strong :
∀ (A : Set) (R : relation A) a1 a2 l1 k1 l2 k2,
R a1 a2 −> permut R (l1 ++ k1) (l2 ++ k2) −>
permut R (l1 ++ a1 :: k1) (l2 ++ a2 :: k2).

The next lemmas show that every element of the second list has a counterpart
w. r. t. R in the first list:

Lemma permut_inv :
∀ (A : Set) (R : relation A) b l1 l2 ,
permut R l1 (b :: l2) −> ∃a, ∃ l1 ’, ∃ l1 ’’,
(R a b /\ l1 = l1’ ++ a :: l1 ’’ /\ permut R (l1’ ++ l1’’) l2 ).

Lemma permut_inv_strong :
∀ (A : Set) (R : relation A) b l1 l2 ’ l2 ’’,
permut R l1 (l2’ ++ b :: l2 ’’) −> ∃a, ∃ l1 ’, ∃ l1 ’’,
(R a b /\ l1 = l1’ ++ a :: l1 ’’ /\ permut R (l1’ ++ l1’’) (l2 ’ ++ l2’’)).

It is of course possible to move the elements block by block, and not one by one:
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Lemma permut_block :
∀ (A : Set) (R : relation A) l1 l1 ’ l2 l2 ’,
permut R l1 l2 −> permut R l1’ l2’ −> permut R (l1 ++ l1’) (l2’ ++ l2).

The next lemma makes explicit the condition under which one can remove a
pair of related elements in permutated lists:

Lemma permut_cons_inside :
∀ (A : Set) (R : relation A) a b l1 l2 ’ l2 ’’,
(∀ a1 b1 a2 b2, In a1 (a :: l1) −> In b1 (l2’ ++ b :: l2 ’’) −>

In a2 (a :: l1) −> In b2 (l2’ ++ b :: l2 ’’) −>
R a1 b1 −> R a2 b1 −> R a2 b2 −> R a1 b2) −>

R a b −> permut R (a :: l1) (l2’ ++ b :: l2 ’’) −> permut R l1 (l2’ ++ l2’’).

This condition means that R is obtained from f , a function from elements to
sets of elements in the following way:

∀ab, aRb⇐⇒ b ∈ f(a)

3.3 Morphism Properties

The definition of permut is compatible with length, list_size and map.

Lemma list_permut_length :
∀ (A : Set) (R : relation A) l1 l2 , list_permut R l1 l2 −> length l1 = length l2.

Lemma list_permut_size :
∀ (A : Set) (R : relation A) (size : A −> nat) l1 l2,
(∀ a a’, In a l −> In a’ l −> R a a’ −> size a = size a’) −>
permut R l1 l2 −> list_size size l1 = list_size size l2 .

Lemma list_permut_map :
∀ (A B : Set) (RA : relation A) (RB : relation B) (f : A −> B) l1 l2,
(∀ a a’, In a l1 −> In a’ l2 −> RA a a’ −> RB (f a) (f a’)) −>
permut RA l1 l2 −> permut RB (map f l1) (map f l2).
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The next properties do not hold in general. The first one, compatibility with
insertion and removal obviously needs the property that R is derived from a
function from elements to sets of elements (cf. Lemma permut_cons_inside).

Lemma permut_add_inside :
∀ (A : Set) (R : relation A) e1 e2 l1 l2 l3 l4 ,
(∀ a1 b1 a2 b2, In a1 (l1 ++ e1 :: l2) −> In b1 (l3 ++ e2 :: l4) −>

In a2 (l1 ++ e1 :: l2) −> In b2 (l3 ++ e2 :: l4) −>
R a1 b1 −> R a2 b1 −> R a2 b2 −> R a1 b2) −>

R e1 e2 −> (permut R (l1 ++ l2) (l3 ++ l4) <−>
permut R (l1 ++ e1 :: l2) (l3 ++ e2 :: l4 )).

The compatibility of adding/removing a whole list holds when R is reflexive
and enjoys the property of being derived from a function from elements to sets
of elements. This implies that R is an equivalence relation.

Lemma permut_app1 :
∀ (A : Set) (R : relation A), (equivalence R) −>
∀ l l1 l2 , permut R l1 l2 <−> permut R (l ++ l1) (l ++ l2).

Lemma permut_app2 :
∀ (A : Set) (R : relation A), (equivalence R) −>
∀ l l1 l2 , permut R l1 l2 <−> permut R (l1 ++ l) (l2 ++ l).

This last lemma is very useful for proving that the equational theory AC is
syntactic [10,9,2], and also holds when R is an equivalence relation:

Axiom ac_syntactic :
∀ (A : Set) (R : relation A) , (equivalence R) −>
∀ (l1 l2 l3 l4 : list A), permut R (l2 ++ l1) (l4 ++ l3) −>
(∃ u1, ∃ u2, ∃ u3, ∃ u4, permut R l1 (u1 ++ u2) /\

permut R l2 (u3 ++ u4) /\
permut R l3 (u1 ++ u3) /\
permut R l4 (u2 ++ u4)).

3.4 Modular Inheritance

The last definition of permut also gives some nice fine grained inheritance prop-
erties, such as for example reflexivity, symmetry, transitivity and decidability.

Lemma permut_refl :
∀ (A : Set) (R : relation A) l ,
(∀ a, In a l −> R a a) −> permut R l l.

Lemma permut_sym :
∀ (A : Set) (R : relation A) l1 l2 ,
(∀ a b, In a l1 −> In b l2 −> R a b −> R b a) −>
permut R l1 l2 −> permut R l2 l1.
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Lemma permut_trans :
∀ (A : Set) (R : relation A) l1 l2 l3 ,
(∀ a b c, In a l1 −> In b l2 −> In c l3 −> R a b −> R b c −> R a c) −>
permut R l1 l2 −> permut R l2 l3 −> permut R l1 l3.

Lemma permut_dec :
∀ (A : Set) (R : relation A),
∀ l1 l2 , (∀ a1 a2, In a1 l1 −> In a2 l2 −> {R a1 a2}+{∼ R a1 a2}) −>
{permut R l1 l2}+{∼ permut R l1 l2}.

Concerning the decidability property, the complexity of the underlying algo-
rithm (which can be obtained by extraction) is very bad: it is a factorial, since in
general, the only way to check that two lists are permutations of each other is to
actually build all permutations of one list (w. r. t. to Leibniz equality), and then
check that every pair of elements at the same rank in the first and in the second
permuted list are related by R. However, when the relation R enjoys the property
of being a function over sets, there is another algorithm which is quadratic: it
consist of searching the second list for an element related to the head of the first
list: whenever there is no such element, both lists are not permutation of each
other, otherwise, it remains to check that the tail of the first list, and the list
obtained by removing the related element in the second list are permutation of
each other. Due to the additional property over R, Lemma permut_cons_inside
applies and no backtracking is needed.

4 Conclusion

We have proposed a modeling of list permutation which has some nice properties.
It is based on the idea of moving elements and is parameterized by an arbitrary
relation for which no properties are required. This allows in particular to define
some relations on terms which use a permutation up to a recursive call of this
relation on a list of subterms, such as for instance ≡RPO, <RPO and =AC .
The decidablity of the underlying relation is not needed and the inheritance
properties are modular. Moreover, the very simple inductive definition (only two
constructors) is in adequacy with the mathematical definition.
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